Nelly Bencomo

Learn More
Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee (Dagstuhl Seminar Organizer Authors) Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger Kienle, Jeff Kramer, Marin Litoiu, Sam(More)
Self-adaptive systems have the capability to autonomously modify their behavior at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and(More)
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of(More)
Self-adaptive systems have the capability to autonomously modify their behaviour at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and(More)
The goal of this roadmap paper is to summarize the stateof-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software(More)
Self-adaptation is emerging as an increasingly important capability for many applications, particularly those deployed in dynamically changing environments, such as ecosystem monitoring and disaster management. One key challenge posed by dynamically adaptive systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS(More)
Requirements are sensitive to the context in which the system-to-be must operate. Where such context is well-understood and is static or evolves slowly, existing RE techniques can be made to work well. Increasingly, however, development projects are being challenged to build systems to operate in contexts that are volatile over short periods in ways that(More)
In this paper we propose an approach to support the design and operation of dynamically adaptive systems. We apply the concept of variability modeling from software product lines to define how systems adapt at runtime to changes in their environment. Our approach models two dynamic variability dimensions; environment variability, which defines the(More)
Self-adaptation is emerging as a crucial enabling capability for many applications, particularly those deployed in dynamically changing environments. One key challenge posed by Dynamically Adaptive Systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS in response to varying environmental conditions. In this(More)