Learn More
BACKGROUND, AIM, AND SCOPE The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of(More)
A promising field to exploit plant-endophyte partnerships is the remediation of contaminated soils and (ground) water. Many plant growth promoting endophytes can assist their host plant to overcome contaminant-induced stress responses, thus providing improved plant growth. During phytoremediation of organic contaminants, plants can further benefit from(More)
The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant(More)
Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. A better understanding of their plant growth-promoting mechanisms could be exploited for sustainable growth of food and feed crops, biomass for biofuel production and feedstocks for industrial(More)
Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with(More)
BACKGROUND, AIM, AND SCOPE Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a(More)
The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida(More)
Microbe-assisted phytoremediation is particularly effective for organic pollutants. The leguminous shrub Cytisus striatus (Hill) Rothm. has been proposed as a candidate species for the rhizoremediation of hexachlorocyclohexane (HCH)-contaminated sites. The aim of this study was to improve the performance of this species using microbial inoculants. C.(More)
Inoculation of plants with their associated microorganisms is a promising strategy for improving phytoremediation of organic contaminants. Isolation and characterisation of these organisms from plants growing in contaminated sites will permit the identification of candidate strains for re-inoculation studies. The diversity of culturable endophytic and(More)
Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these(More)