Learn More
Identification of the pathogenic mutations underlying autosomal recessive nonsyndromic hearing loss (ARNSHL) is difficult, since causative mutations in 39 different genes have so far been reported. After excluding mutations in the most common ARNSHL gene, GJB2, via Sanger sequencing, we performed whole-exome sequencing (WES) in 30 individuals from 20(More)
GJB2 mutations are major causes of autosomal recessive nonsyndromic hearing loss (ARNSHL) in many populations. However, a few mutations have an ethnic-specific background. We performed a review by means of a meta-analysis to evaluate the influence of the 35delG on ARNSHL. A PubMed, InterScience, British Library Direct, and Sciencedirect search using(More)
PURPOSE Autosomal recessive nonsyndromic deafness (ARNSD) is characterized by a high degree of genetic heterogeneity, with reported mutations in 58 different genes. This study was designed to detect deafness-causing variants in a multiethnic cohort with ARNSD by using whole-exome sequencing (WES). METHODS After excluding mutations in the most common gene,(More)
Hereditary hearing loss (HHL) is a very common disorder. When inherited in an autosomal recessive manner, it typically presents as an isolated finding. Interestingly and unexpectedly, in spite of extreme heterogeneity, mutations in one gene, GJB2, are the most common cause of congenital severe-to-profound deafness in many different populations. In this(More)
Massively parallel DNA-sequencing systems provide sequence of huge numbers of different DNA strands at once. These technologies are revolutionizing our understanding in medical genetics, accelerating health-improvement projects, and ushering to a fully understood personalized medicine in near future. Whole-exome sequencing (WES) is application of the(More)
GENETIC DISORDERS ARE TRADITIONALLY CATEGORIZED INTO THREE MAIN GROUPS: single-gene, chromosomal, and multifactorial disorders. Single gene or Mendelian disorders result from errors in DNA sequence of a gene and include autosomal dominant (AD), autosomal recessive (AR), X-linked recessive (XR), X-linked dominant and Y-linked (holandric) disorders.(More)
Traditional approaches for gene mapping from candidate gene studies to positional cloning strategies have been applied for Mendelian disorders. Since 2005, next-generation sequencing (NGS) technologies are improving as rapid, high-throughput and cost-effective approaches to fulfill medical sciences and research demands. Using NGS, the underlying causative(More)
Hearing loss (HL) is the most prevalent sensory defect affecting 1 in 500 neonates. Genetic factors are involved in half of the cases. The extreme heterogeneity of HL makes it difficult to analyze and determine the accurate genetic causes of the impairment. Up to now, 10 genes, namely, GJB2, GJB6, SLC26A4, TECTA, PJVK, Col11A2, Myo15A, TMC1, RDX and(More)
Mutations of 3 beta hydroxysteroid dehydrogenase type II (HSD3B2) gene result in different clinical consequences. We explain a patient who demonstrated a salt wasting form of 3βHSD deficiency in infancy. Signs of hyponatremia and hyperkalemia were recognized in the infant with ambiguous genitalia and perineal hypospadias. The 46,XY male was genotyped by(More)