Neila Chekkat

Learn More
DR4 (Death Receptor 4) and DR5 (Death Receptor 5) are two potential targets for cancer therapy due to their ability to trigger apoptosis of cancer cells, but not normal ones, when activated by their cognate ligand TRAIL (TNF related apoptosis-inducing ligand). Therapies based on soluble recombinant TRAIL or agonist antibodies directed against one of the(More)
We have developed a straightforward strategy to multimerize an apoptogenic peptide that mimics the natural tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by using adamantane-based dendrons as multivalent scaffolds. The selective binding affinity of the ligands to TRAIL receptor 2 (TR2) was studied by surface plasmon resonance, thus(More)
The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell(More)
Cyclic peptides containing redox-stable thioether bridges might provide a useful alternative to disulfide-bridged bioactive peptides. We report the effect of replacing the disulfide bridge with a lanthionine linkage in a 16-mer cyclic peptide that binds to death receptor 5 (DR5, TRAIL-R2). Upon covalent oligomerisation, the disulfide-bridged peptide has(More)
The potent antitumor effect of α-galactosylceramide (α-GalCer) is based on its recognition by invariant Natural Killer T cells (iNKT) after its capture and presentation by antigen presenting cells including dendritic cells (DCs). Synthetic α-GalCer has already been tested in advanced cancer patients but no or only moderate clinical responses were obtained.(More)
The current interest for platinum N-heterocyclic carbene complexes in cancer research stems from their impressive toxicity reported against a range of different human cancer cells. To date, the demonstration of their in vivo efficacy relative to that of established platinum-based drugs has not been specifically addressed. Here, we introduce an innovative(More)
TNF receptor superfamily members (TNFRSF) such as CD40, Fas and TRAIL receptor 2 (TRAILR2) participate to the adaptive immune response by eliciting survival, proliferation, differentiation and/or cell death signals. The balance between these signals determines the fate of the immune response. It was previously reported that these receptors are able to(More)
  • 1