Learn More
Shear thickening is a widespread phenomenon in suspension flow that, despite sustained study, is still the subject of much debate. The longstanding view that shear thickening is due to hydrodynamic clusters has been challenged by recent theory and simulations suggesting that contact forces dominate, not only in discontinuous, but also in continuous shear(More)
We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a(More)
Using a novel biaxial confocal rheoscope, we investigate the flow of the shear induced vorticity aligned string phase [X. Cheng et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 109, 63], which has a highly anisotropic microstructure. Using biaxial shear protocols we show that we have excellent control of the string phase anisotropic morphology. We choose a(More)
  • 1