Learn More
The ATPase cycle of GroE chaperonins has been examined by transient kinetics to dissect partial reactions in complexes where GroEL is asymmetrically loaded with nucleotides. The occupation of one heptameric ring by ADP does not inhibit the loading of the other with ATP nor does it prevent the consequent structural rearrangement to the "open" state. However,(More)
Myosin V is a processive actin-based motor protein that takes multiple 36-nm steps to deliver intracellular cargo to its destination. In the laser trap, applied load slows myosin V heavy meromyosin stepping and increases the probability of backsteps. In the presence of 40 mm phosphate (P(i)), both forward and backward steps become less load-dependent. From(More)
The ATP hydrolysis rate and shortening velocity of muscle are load-dependent. At the molecular level, myosin generates force and motion by coupling ATP hydrolysis to lever arm rotation. When a laser trap was used to apply load to single heads of expressed smooth muscle myosin (S1), the ADP release kinetics accelerated with an assistive load and slowed with(More)
Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix-hairpin-helix (HhH) superfamily and the Fpg/Nei family. The(More)
Each of the heads of the motor protein myosin II is capable of supporting motion. A previous report showed that double-headed myosin generates twice the displacement of single-headed myosin (Tyska, M.J., D.E. Dupuis, W.H. Guilford, J.B. Patlak, G.S. Waller, K.M. Trybus, D.M. Warshaw, and S. Lowey. 1999. Proc. Natl. Acad. Sci. USA. 96:4402-4407). To(More)
Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum(More)
Nucleotide excision DNA repair is mechanistically conserved across all kingdoms of life. In prokaryotes, this multi-enzyme process requires six proteins: UvrA-D, DNA polymerase I and DNA ligase. To examine how UvrC locates the UvrB-DNA pre-incision complex at a site of damage, we have labeled UvrB and UvrC with different colored quantum dots and(More)
Aggregation of the β-amyloid (Aβ) peptide into toxic oligomers is considered the primary event in the pathogenesis of Alzheimer's disease. Previously generated peptides and mimetics designed to bind to amyloid fibrils have encountered problems in solubility, protease susceptibility and the population of small soluble toxic oligomers. We present a new method(More)
A powerful new approach has become much more widespread and offers insights into aspects of DNA repair unattainable with billions of molecules. Single molecule techniques can be used to image, manipulate or characterize the action of a single repair protein on a single strand of DNA. This allows search mechanisms to be probed, and the effects of force to be(More)
Contraction of striated muscle is tightly regulated by the release and sequestration of calcium within myocytes. At the molecular level, calcium modulates myosin's access to the thin filament. Once bound, myosin is hypothesized to potentiate the binding of further myosins. Here, we directly image single molecules of myosin binding to and activating thin(More)