Learn More
In layer 4 of cat visual cortex, the monocular, concentric receptive fields of thalamic neurons, which relay retinal input to the cortex, are transformed into 'simple' cortical receptive fields that are binocular and selective for the precise orientation, direction of motion, and size of the visual stimulus. These properties are thought to arise from the(More)
The numbers and distributions of dendritic spines were estimated for six adult and three juvenile biocytin-injected neurones from the CA1 region of the hippocampus of the albino rat. For each cell, a sample of long dendritic segments that lay favourably in the plane of focus was drawn at high magnification and the visible spines counted. Correction was made(More)
The role of NMDA receptors in the induction of long-term potentiation (LTP) and long-term depression (LTD) is well established but which particular NR2 subunits are involved in these plasticity processes is still a matter of controversy. We have studied the effects of subtype selective NMDA receptor antagonists on LTP induced by high frequency stimulation(More)
The aim of this study was to provide quantitative descriptions of the dendritic branching patterns of pyramidal neurones in the CA1 region of the rat hippocampus. Thirteen adult cells were filled with biocytin and reconstructed by using the light microscope. The number of basal trees arising from the soma of each cell ranged from two to eight. There was(More)
Potentiation at synapses between CA3 and the CA1 pyramidal neurons comprises both transient and sustained phases, commonly referred to as short-term potentiation (STP or transient LTP) and long-term potentiation (LTP), respectively. Here, we utilized four subtype-selective N-methyl-d-aspartate receptor (NMDAR) antagonists to investigate whether the(More)
During the first week of life, there is a shift from kainate to AMPA receptor-mediated thalamocortical transmission in layer IV barrel cortex. However, the mechanisms underlying this change and the differential properties of AMPA and kainate receptor-mediated transmission remain essentially unexplored. To investigate this, we studied the quantal properties(More)
The principal target of lateral geniculate nucleus in the cat visual cortex is the stellate neurons of layer 4. In previously reported work with intracellular recording and extracellular stimulation in slices of visual cortex, three general classes of fast excitatory synaptic potentials (EPSPs) in layer 4a spiny stellate neurons were identified. One of(More)
At many central synapses, the presynaptic bouton and postsynaptic density are structurally correlated. However, it is unknown whether this correlation extends to the functional properties of the synapses. To investigate this, we made recordings from synaptically coupled pairs of pyramidal neurons in rat visual cortex. The mean peak amplitude of EPSPs(More)
Perampanel is a non-competitive AMPA receptor antagonist that is under development as an anti-epileptic therapy. Although it is known to reduce calcium flux mediated by AMPA receptors in cultured cortical neurons, there are no studies of its selectivity in synaptic transmission in more intact systems. In the present study using hippocampal slices,(More)
NMDA receptors (NMDARs) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and(More)