Learn More
The number of 3,4-methylenedioxymethamphetamine (ecstasy or MDMA) animal research articles is rapidly increasing and yet studies which place emphasis on the clinical significance are limited due to a lack of reliable human data. MDMA produces an acute, rapid release of brain serotonin and dopamine in experimental animals and in the rat this is associated(More)
The pharmacology of several commonly described 5-hydroxytryptamine (5-HT)(2C) receptor agonists was investigated in vivo and in vitro at rat 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptors. The 5-HT(2C) receptor agonist, (S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate (Ro 60-0175), did not induce a significant head-twitch response when given(More)
D- and L-amphetamine sulphate isomers, methylphenidate and atomoxetine, are effective treatments for attention-deficit hyperactivity disorder (ADHD). This study provides a detailed comparison of their effects on the synaptosomal and vesicular accumulation of dopamine (DA) and noradrenaline (NA) and release in vitro in rat prefrontal cortex and striatum.(More)
Rationale. The 5-HT2C receptor subtype has been implicated extensively in the regulation of ingestive behaviour. Objective. To assess whether chronic administration of the preferential 5-HT2C receptor agonist, mCPP, reduces rat body weight gain and to determine if this effect is wholly or partially attributable to the effect of the drug on daily food(More)
Guanfacine (an alpha-2A adrenoreceptor agonist) is a drug of benefit in the treatment of attention deficit hyperactivity disorder (ADHD) (Taylor FB, Russo J, J Clin Psychopharmacol 21:223–228, 2001). Assessment of this drug using neuroimaging will provide information about the brain regions involved in its effects. The pharmacological magnetic resonance(More)
3,4-Methylenedioxymethamphetamine (MDMA) administration produces neurotoxic degeneration of serotonin terminals in rat brain. These effects occur only after systemic administration and not after central injection, suggesting that peripheral metabolism, possibly hepatic, is required for toxicity. Glutathione is one of the principal cellular defence(More)
Atomoxetine is a selective noradrenaline reuptake inhibitor used in the treatment of attention deficit hyperactivity disorder (ADHD) which has not yet been assessed using pharmacological neuroimaging for its effects on rat brain activity. The pharmacological magnetic resonance imaging (phMRI) blood oxygenation level dependent (BOLD) response was determined(More)
The d- and l-amphetamine sulphate isomers are used in the formulation of Adderall XR®, which is effective in the treatment of attention-deficit hyperactivity disorder (ADHD). The effects of these isomers on brain activity has not been examined using neuroimaging. This study determines the pharmacological magnetic resonance imaging(More)
Administration of 3,4-methylenedioxymethamphetamine (MDMA) or 3,4-methylenedioxyamphetamine (MDA) to rats produces serotonergic nerve terminal degeneration. However, they are not neurotoxic when injected directly into the brain, suggesting the requirement for peripheral metabolism of MDMA to a neurotoxic metabolite. Alpha-methyldopamine (alpha-MeDA) is a(More)