Learn More
On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempel 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass(More)
The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules(More)
We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The(More)
In the current paradigm, Oort cloud comets formed in the giant planets' region of the solar nebula, where temperatures and other conditions varied greatly. The measured compositions of four such comets (Halley, Hyakutake, Hale-Bopp, and Lee) are consistent with formation from interstellar ices in the cold nebular region beyond Uranus. The composition of(More)
The remarkable compositional diversity of volatile ices within comets can plausibly be attributed to several factors, including differences in the chemical, thermal and radiation environments in comet-forming regions, chemical evolution during their long storage in reservoirs far from the Sun, and thermal processing by the Sun after removal from these(More)
The composition of ices in comets may reflect that of the molecular cloud in which the Sun formed, or it may show evidence of chemical processing in the pre-planetary accretion disk around the proto-Sun. As carbon monoxide (CO) is ubiquitous in molecular clouds, its abundance with respect to water could help to determine the degree to which pre-cometary(More)
  • 1