Learn More
Summarising a high dimensional data set with a low dimensional embedding is a standard approach for exploring its structure. In this paper we provide an overview of some existing techniques for discovering such embeddings. We then introduce a novel probabilistic interpretation of principal component analysis (PCA) that we term dual probabilistic PCA(More)
WiFi localization, the task of determining the physical location of a mobile device from wireless signal strengths, has been shown to be an accurate method of indoor and outdoor localization and a powerful building block for location-aware applications. However, most localization techniques require a training set of signal strength readings labeled against(More)
In this paper we introduce a new underlying probabilistic model for principal component analysis (PCA). Our formulation interprets PCA as a particular Gaussian process prior on a mapping from a latent space to the observed data-space. We show that if the prior's covariance function constrains the mappings to be linear the model is equivalent to PCA, we then(More)
We introduce a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction. This method allows us to variationally integrate out the input variables of the Gaussian process and compute a lower bound on the exact marginal likelihood of the nonlinear latent variable(More)
We present a framework for sparse Gaussian process (GP) methods which uses forward selection with criteria based on information-theoretic principles, previously suggested for active learning. Our goal is not only to learn d–sparse predictors (which can be evaluated in O(d) rather than O(n), d n, n the number of training points), but also to perform training(More)
Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type Ca(V)1.3 Ca(2+) channels, the biophysics of which are still unknown in(More)
We present a general method for deriving collapsed variational inference algorithms for probabilistic models in the conjugate exponential family. Our method unifies many existing approaches to collapsed variational inference. Our collapsed variational inference leads to a new lower bound on the marginal likelihood. We exploit the information geometry of the(More)
We present a method for the sparse greedy approximation of Bayesian Gaussian process regression, featuring a novel heuristic for very fast forward selection. Our method is essentially as fast as an equivalent one which selects the " support " patterns at random, yet it can outperform random selection on hard curve fitting tasks. More importantly, it leads(More)