Neil A. Hukriede

Learn More
The zebrafish is an excellent genetic system for the study of vertebrate development and disease. In an effort to provide a rapid and robust tool for zebrafish gene mapping, a panel of radiation hybrids (RH) was produced by fusion of irradiated zebrafish AB9 cells with mouse B78 cells. The overall retention of zebrafish sequences in the 93 RH cell lines(More)
In the developing imaginal wing disc of Drosophila, cells at the dorsoventral boundary require localized Notch activity for specification of the wing margin. The Notch ligands Serrate and Delta are required on opposite sides of the presumptive wing margin and, even though activated forms of Notch generate responses on both sides of the dorsoventral(More)
Loss of kidney function underlies many renal diseases. Mammals can partly repair their nephrons (the functional units of the kidney), but cannot form new ones. By contrast, fish add nephrons throughout their lifespan and regenerate nephrons de novo after injury, providing a model for understanding how mammalian renal regeneration may be therapeutically(More)
To investigate Lim1 function during gastrulation, we used transcript depletion through DEED antisense oligonucleotides in Xenopus and cell transplantation in mice. Xenopus embryos depleted of Lim1 lack anterior head structures and fail to form a proper axis as a result of a failure of gastrulation movements, even though mesodermal cell identities are(More)
A screen for developmentally regulated genes was conducted in the zebrafish, a system offering substantial advantages for the study of the molecular genetics of vertebrate embryogenesis. Clones from a normalized cDNA library from early somitogenesis stages were picked randomly and tested by high-throughput in situ hybridization for restricted expression in(More)
To understand the molecular basis of sensory organ development and disease, we have cloned and characterized the zebrafish mutation dog-eared (dog) that is defective in formation of the inner ear and lateral line sensory systems. The dog locus encodes the eyes absent-1 (eya1) gene and single point mutations were found in three independent dog alleles, each(More)
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both(More)
Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images(More)
The LIM-domain-binding protein Ldb1 is a key factor in the assembly of transcriptional complexes involving LIM-homeodomain proteins and other transcription factors that regulate animal development. We identified Ssdp proteins (previously described as sequence-specific, single-stranded-DNA-binding proteins) as components of Ldb1-associated nuclear complexes(More)
CTCF is a nuclear phosphoprotein capable of using different subsets of its 11 Zn fingers (ZF) for sequence-specific binding to many dissimilar DNA CTCF-target sites. Such sites were identified in the genomic DNA of various multicellular organisms, in which the CTCF gene was cloned, including insects, birds, rodents, and primates. CTCF/DNA-complexes formed(More)