Neerja Karnani

Learn More
DNA replication in metazoans initiates from multiple chromosomal loci called origins. Currently, there are two methods to purify origin-centered nascent strands: lambda exonuclease digestion and anti-bromodeoxyuridine immunoprecipitation. Because both methods have unique strengths and limitations, we purified nascent strands by both methods, hybridized them(More)
PR-Set7/Set8 is a cell-cycle-regulated enzyme that monomethylates lysine 20 of histone H4 (H4K20). Set8 and monomethylated H4K20 are virtually undetectable during G1 and S phases of the cell cycle but increase in late S and in G2. We identify CRL4(Cdt2) as the principal E3 ubiquitin ligase responsible for Set8 proteolytic degradation in the S phase of the(More)
In eukaryotes, accurate control of replication time is required for the efficient completion of S phase and maintenance of genome stability. We present a high-resolution genome-tiling array-based profile of replication timing for approximately 1% of the human genome studied by The ENCODE Project Consortium. Twenty percent of the investigated segments(More)
We have used a novel bubble-trapping procedure to construct nearly pure and comprehensive human origin libraries from early S- and log-phase HeLa cells, and from log-phase GM06990, a karyotypically normal lymphoblastoid cell line. When hybridized to ENCODE tiling arrays, these libraries illuminated 15.3%, 16.4%, and 21.8% of the genome in the ENCODE(More)
Chromosomes in human cancer cells are expected to initiate replication from predictably localized origins, firing reproducibly at discrete times in S phase. Replication products obtained from HeLa cells at different stages of S phase were hybridized to cDNA and genome tiling oligonucleotide microarrays to determine the temporal profile of replication of(More)
Although many chemotherapy drugs activate the intra-S-phase checkpoint pathway to block S-phase progression, not much is known about how and where the intra-S-phase checkpoint regulates origins of replication in human chromosomes. A genomic analysis of replication in human cells in the presence of hydroxyurea (HU) revealed that only the earliest origins(More)
Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the complex interactions of inherited and environmental components that define the developmental origins of a range of disorders. The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in(More)
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about(More)
We have cloned the first glucose transporter CaHGT1 (Candida albicans high-affinity glucose transporter) of a pathogenic yeast, Candida albicans. The DNA sequence (GenBank accession number Y16834) analysis revealed an ORF encoding a novel protein of 545 amino acids with a predicted molecular mass of 60.67 kDa. The putative protein with 12 transmembrane(More)
The response of the yeast Saccharomyces cerevisiae to human steroid hormone progesterone was studied by genomic expression profiling. The transcription profile data revealed that steroid response was a global phenomenon wherein a host of genes were affected. For example, 163 genes were upregulated and 40 genes were downregulated, by at least more than(More)