Learn More
This paper addresses the self-assembly of a large team of autonomous boats into floating platforms. We describe the design of individual boats, the systems concept, the algorithms, the software architecture and experimental results with prototypes that are 1:12 scale realizations of modified ISO shipping containers, with the goal of demonstrating(More)
Legged locomotion is an open problem in robotics, particularly for non-level surfaces. With decreasing robot size, different issues for climbing mechanisms and their attachment and detachment appear due to the physics of scaling. This paper describes micro-scale phenomena for different adhesion methods that can be employed in microrobots. These adhesion(More)
Full autonomy remains a challenge for miniature robotic platforms due to mass and size requirements of on-board power and control electronics. This paper presents a solution to these challenges with a 2.3g autonomous legged robot. An off-the-shelf optical mouse sensor is adapted for use on the Harvard Ambulatory Microrobot (HAMR) by reducing the sensor(More)
This paper presents a non-linear, dynamic model of the flexure-based transmission in the Harvard Ambulatory Microrobot (HAMR). The model is derived from first principles and has led to a more comprehensive understanding of the components in this transmission. In particular, an empirical model of the dynamic properties of the compliant Kapton flexures is(More)
  • 1