Learn More
Anthocyanins are red and violet pigments that color flowers, fruits and epidermal tissues in virtually all flowering plants. A single order, Caryophyllales, contains families in which an unrelated family of pigments, the betalains, color tissues normally pigmented by anthocyanins. Here we show that CYP76AD1 encoding a novel cytochrome P450 is required to(More)
The brown color of Arabidopsis seeds is caused by the deposition of proanthocyanidins (PAs or condensed tannins) in their inner testa layer. A transcription factor complex consisting of TT2, TT8 and TTG1 controls expression of PA biosynthetic genes, just as similar TTG1-dependent complexes have been shown to control flavonoid pigment pathway gene expression(More)
Nearly all flowering plants produce red/violet anthocyanin pigments. Caryophyllales is the only order containing families that replace anthocyanins with unrelated red and yellow betalain pigments. Close biological correlation of pigmentation patterns suggested that betalains might be regulated by a conserved anthocyanin-regulating transcription factor(More)
Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS(More)
  • 1