Nectarios Klonis

Alan F Cowman3
Melanie Rug3
Con Dogovski2
3Alan F Cowman
3Melanie Rug
2Con Dogovski
Learn More
The malaria parasite, Plasmodium falciparum, exports proteins beyond the confines of its own plasma membrane, however there is debate regarding the machinery used for these trafficking events. We have generated transgenic parasites expressing chimeric proteins and used immunofluorescence studies to determine the locations of plasmodial homologues of the(More)
Malaria parasites export proteins beyond their own plasma membrane to locations in the red blood cells in which they reside. Maurer's clefts are parasite-derived structures within the host cell cytoplasm that are thought to function as a sorting compartment between the parasite and the erythrocyte membrane. However, the genesis of this compartment and the(More)
During the maturation of intracellular asexual stages of Plasmodium falciparum parasite-encoded proteins are exported into the erythrocyte cytosol. A number of these parasite proteins attach to the host cell cytoskeleton and facilitate transformation of a disk-shaped erythrocyte into a rounded and more rigid infected erythrocyte able to cytoadhere to the(More)
The DV (digestive vacuole) of the malaria parasite, Plasmodium falciparum, is the site of Hb (haemoglobin) digestion and haem detoxification and, as a consequence, the site of action of CQ (chloroquine) and related antimalarials. However, the precise pH of the DV and the endocytic vesicles that feed it has proved difficult to ascertain. We have developed(More)
Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed(More)
The malaria parasite undergoes a remarkable series of morphological transformations, which underpin its life in both human and mosquito hosts. The advent of molecular transfection technology coupled with the ability to introduce fluorescent reporter proteins that faithfully track and expose the activities of parasite proteins has revolutionized our view of(More)
Current first-line artemisinin antimalarials are threatened by the emergence of resistant Plasmodium falciparum. Decreased sensitivity is evident in the initial (early ring) stage of intraerythrocytic development, meaning that it is crucial to understand the action of artemisinins at this stage. Here, we examined the roles of iron (Fe) ions and haem in(More)
An unexpectedly prominent aspect of murine experimental autoimmune encephalomyelitis is pre-onset astrocyte reactivity. Further examination of this phenomenon in the spinal cord demonstrates that grey matter, as well as white matter astrocytes, change their morphology and cell density from the earliest disease manifestation. Comparison of the two(More)
  • 1