Learn More
Sphingomyelin (SM) and cholesterol are coregulated metabolically and associate physically in membrane microdomains involved in cargo sorting and signaling. One mechanism for regulation of this metabolic interface involves oxysterol binding protein (OSBP) via high-affinity binding to oxysterol regulators of cholesterol homeostasis and activation of SM(More)
Oxysterol-binding proteins (OSBPs) are a family of eukaryotic intracellular lipid receptors. Mammalian OSBP1 binds oxygenated derivatives of cholesterol and mediates sterol and phospholipid synthesis through as yet poorly undefined mechanisms. The precise cellular roles for the remaining members of the oxysterol-binding protein family remain to be(More)
A cDNA encoding a cytoplasmic oxysterol binding protein was expressed at high levels by transfection in animal cells. This protein binds oxysterols such as 25-hydroxycholesterol that regulate sterol metabolism by transcriptional and posttranscriptional effects. In the transfected cells, some of the oxysterol binding protein (OSBP) was distributed diffusely(More)
Oxysterol-binding protein (OSBP) is 1 of 12 related proteins implicated in the regulation of vesicle transport and sterol homeostasis. A yeast two-hybrid screen using full-length OSBP as bait was undertaken to identify partner proteins that would provide clues to the function of OSBP. This resulted in the cloning of vesicle-associated membrane(More)
The endoplasmic reticulum (ER) is an interconnected network of tubular and planar membranes that supports the synthesis and export of proteins, carbohydrates and lipids. Phospholipids, in particular phosphatidylcholine (PC), are synthesized in the ER where they have essential functions including provision of membranes required for protein synthesis and(More)
The nucleus contains a network of tubular invaginations of the nuclear envelope (NE), termed the nucleoplasmic reticulum (NR), implicated in transport, gene expression, and calcium homeostasis. Here, we show that proliferation of the NR, measured by the frequency of NE invaginations and tubules, is regulated by CTP:phosphocholine cytidylyltransferase-alpha(More)
The nucleoplasmic reticulum (NR), a nuclear membrane network implicated in signaling and transport, is formed by the biosynthetic and membrane curvature-inducing properties of the rate-limiting enzyme in phosphatidylcholine synthesis, CTP:phosphocholine cytidylyltransferase (CCT) alpha. The NR is formed by invagination of the nuclear envelope and has an(More)
De novo biosynthesis of sphingolipids begins in the endoplasmic reticulum (ER) and continues in the Golgi apparatus and plasma membrane. A crucial step in sphingolipid biosynthesis is the transport of ceramide by vesicular and non-vesicular mechanisms from its site of synthesis in the ER to the Golgi apparatus. The recent discovery of the ceramide transport(More)
Myristoylated alanine-rich C-kinase substrate (MARCKS), a prominent substrate for conventional and novel protein kinase C (PKC) isoforms, is involved in the regulation of membrane-cytoskeletal interactions. Addition of [gamma-32P]ATP to the membrane fraction of digitonin-permeabilized C6 glioma cells resulted in phosphorylation and release of MARCKS,(More)
Curcumin, the principal curcuminoid of tumeric, has potent anticancer activity. To determine the mechanism of curcumin-induced cytotoxicity in prostate cancer cells, we exposed PC3 prostate carcinoma cells to 25 to 100 microM curcumin for 24 to 72 h. Curcumin treatment of PC3 cells caused time- and dose-dependent induction of apoptosis and depletion of(More)