Neal D. Durant

Learn More
1,1,1-Trichloroethane (TCA) in groundwater is susceptible to a variety of natural degradation mechanisms. Evidence of intrinsic decay of TCA in aquifers is commonly observed; however, TCA remains a persistent pollutant at many sites and some of the daughter products that accumulate from intrinsic decay of TCA have been determined to be more toxic than the(More)
Dehalococcoides bacteria that produce catabolic vinyl chloride (VC) reductive dehalogenase enzymes have been implicated as a requirement for successful biological dechlorination of VC to ethene in groundwater systems. Therefore, the functional genes in Dehalococcoides that produce VC reductase (e.g., vcrA) may be important biomarkers for predicting and(More)
Exploiting microorganisms for remediation of waste sites is a promising alternative to groundwater pumping and above ground treatment. The objective of in situ bioremediation is to stimulate the growth of indigenous or introduced microorganisms in regions of subsurface contamination, and thus to provide direct contact between microorganisms and the(More)
The importance of chemical conditions and mass transfer effects to in situ bioremediation of PAHs is presented using a case study. In situ bioremediation is being evaluated as a means for remediating a coal-tar contaminated aquifer at the site of a former manufactured gas plant. Two objectives of this work have been to evaluate the potential for the(More)
The performance of enhanced reductive dechlorination (ERD) for in situ remediation of cis-1,2-dichloroethene (cDCE) and vinyl chloride in clayey till was investigated in a pilot test. A dilute groundwater solution containing emulsified soybean oil and Dehalococcoides bacteria was injected into a sand-filled hydraulic fracture. Fermentation of the ERD(More)
Microcosm studies investigated the effects of bioaugmentation with a mixed Dehalococcoides (Dhc)/Dehalobacter (Dhb) culture on biological enhanced reductive dechlorination for treatment of 1,1,1-trichloroethane (TCA) and chloroethenes in groundwater at three Danish sites. Microcosms were amended with lactate as electron donor and monitored over 600 days.(More)
The feasibility of aerobic in situ bioremediation isbeing investigated for use in a strategy to controlsubsurface coal tar contamination at the site of aformer manufactured gas plant. As part of thisinvestigation, anoxic aquifer sands collected between11 and 25 m below ground surface were assayed in batchmicrocosms to measure the singular and(More)
The presented research concerned the compatibility of cosolvents with in situ alkaline hydrolysis (ISAH) for treatment of organophosphorous (OPP) pesticide contaminated sites. In addition, the influence of moderate temperature heat increments was studied as a possible enhancement method. A complex dense non-aqueous phase liquid (DNAPL) of primarily(More)
  • 1