Learn More
Muscarinic receptors in sarcolemmal membranes, digitonin-solubilized extracts, and purified preparations from porcine atria have revealed a shortfall in the apparent capacity for N-[3H]methylscopolamine, which was only about 75% of that for [3H]quinuclidinylbenzilate. Since binding at near-saturating concentrations of [3H]quinuclidinylbenzilate was(More)
We investigated the effect of the charge and the hydrophobicity of drug delivery system (DDS) carriers on their specificity to living malignant melanoma B16F10 cells with the atomic force microscope. To model various nanoparticle DDS carriers, we used silica particles that were modified with silane coupling agents. We then measured the compression and(More)
In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force(More)
Here, we propose a new method to improve the atomic force microscopy (AFM) image resolution of soft samples, such as cells, in liquid. Attaching a colloid probe to a cantilever was seen improve the image resolution of a living cell in a physiological buffer solution, obtained by the normal tapping mode, when compared to an image obtained using a regular(More)
We used the atomic force microscope to study how the cell type and the density of cells adsorbed at a substrate can affect the adhesion between a living cell and a model drug delivery system (DDS) carrier nano-particle. We used three different anchorage-dependent cells, i.e., a living mouse fibroblast cell (L929), a living human colon cancer cell (Caco2),(More)
  • 1