Learn More
Anthracnose disease caused by the Colletotrichum gloeosporioides species complex is a major problem worldwide. In this study, we investigated the phylogenetic diversity of 207 Indian Colletotrichum isolates, associated with symptomatic and asymptomatic tissues of mango, belonging to this species complex. Phylogenetic analyses were performed based on a(More)
The role of Hsp70 chaperones in yeast prion propagation is well established. Highly conserved Hsp90 chaperones participate in a number of cellular processes, such as client protein maturation, protein degradation, cellular signalling and apoptosis, but little is known about their role in propagation of infectious prion like aggregates. Here, we examine the(More)
The BAG family of proteins is evolutionarily conserved from yeast to humans and plants. In animals and plants, the BAG family possesses multiple members with overlapping and distinct functions that regulate many cellular processes, such as signaling, protein degradation, and stress response. The only BAG domain protein in Saccharomyces cerevisiae is Snl1,(More)
Plant growth-promoting rhizobacteria (PGPR), found in the rhizospheric region of plants, not only suppress plant disease, but also directly improve plant health by improving the availability of nutrients and by providing phytostimulants. Herein, we report the high-quality genome sequence of Serratia fonticola strain AU-P3(3), a PGPR of the pea plant, which(More)
Plant health can be augmented by plant-growth-promoting rhizobacteria (PGPR) that confer biofertilizer, phytostimulation, and biocontrol activities. Herein, we provide the high-quality draft genome sequence of Serratia fonticola strain AU-AP2C, a Gram-negative motile PGPR of the pea plant, conferring phosphate solubilization, ammonia production, and(More)
Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains(More)
  • 1