Learn More
The vif gene of human immunodeficiency virus type 1 (HIV-1) encodes a basic Mr 23,000 protein that is necessary for production of infectious virions by nonpermissive cells (human lymphocytes and macrophages) but not by permissive cells such as HeLa-CD4. It had been proposed that permissive cells may contain an unidentified factor that functions like the(More)
Glutamate transporters from the central nervous system play a crucial role in the clearance of the transmitter from the synaptic cleft. Glutamate is cotransported with sodium ions, and the electrogenic translocation cycle is completed by countertransport of potassium. Mutants that cannot interact with potassium are only capable of catalyzing electroneutral(More)
Signal transductions by the dual-function CXCR4 and CCR5 chemokine receptors/HIV type 1 (HIV-1) coreceptors were electrophysiologically monitored in Xenopus laevis oocytes that also coexpressed the viral receptor CD4 and a G protein-coupled inward-rectifying K+ channel (Kir 3.1). Large Kir 3.1-dependent currents generated in response to the corresponding(More)
We have used a focal infectivity method to quantitatively analyze the CD4, CXCR-4, and CCR-5 dependencies for infections by diverse primary patient (PR) and laboratory-adapted (LA) isolates of human immunodeficiency virus type 1 (HIV-1). Infectivities of T-cell-tropic viruses were analyzed in a panel of HeLa-CD4 cell clones that have distinct quantities of(More)
When interacting with the CD4 receptor, the HIV gp120 envelope glycoprotein undergoes conformational changes that allow binding to the chemokine receptor. Receptor binding is proposed to lead to conformational changes in the gp41 transmembrane envelope glycoprotein involving the creation and/or exposure of a coiled coil consisting of three heptad repeat(More)
Recent evidence suggests that primary patient isolates of T-cell-tropic human immunodeficiency virus type 1 (HIV-1 ) have lower affinities for CD4 than their laboratory-adapted derivatives, that this may partly result from tighter gp120-gp41 bonds that constrain the CD4 binding sites of the primary viruses, and that selection for increased CD4 affinity may(More)
Like the CCR5 chemokine receptors of humans and rhesus macaques, the very homologous (approximately 98-99% identical) CCR5 of African green monkeys (AGMs) avidly binds beta-chemokines and functions as a coreceptor for simian immunodeficiency viruses. However, AGM CCR5 is a weak coreceptor for tested macrophage-tropic (R5) isolates of human immunodeficiency(More)
The coexpression of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins and receptors leads to the lysis of single cells by a process that is dependent upon membrane fusion. This cell lysis was inhibited by low-molecular-weight compounds that interfere with receptor binding or with receptor-induced conformational transitions in the envelope(More)
Binding to the CD4 receptor induces conformational changes in the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein. These changes allow gp120 to bind the coreceptor, either CCR5 or CXCR4, and prime the gp41 transmembrane envelope glycoprotein to mediate virus-cell membrane fusion and virus entry. Soluble forms of CD4 (sCD4) and(More)
The chemokine receptor CXCR4 plays an important role as the receptor for the normal physiological function of stromal cell-derived factor 1alpha (SDF-1alpha) and the coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) into the cell. In a recent work (S. Tian et al., J. Virol. 79:12667-12673, 2005), we found that many residues throughout(More)