Learn More
BACKGROUND High-intensity focused US (HIFU) is becoming more widely used for noninvasive and minimally invasive ablation of benign and malignant tumors. Recent studies suggest that HIFU can also enhance targeted drug delivery and stimulate an antitumor immune response in many tumors. However, targeting pancreatic and liver tumors by using an extracorporeal(More)
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in(More)
PURPOSE The lack of effective treatment options for pancreatic cancer has led to a 5-year survival rate of just 8%. Here, we evaluate the ability to enhance targeted drug delivery using mild hyperthermia in combination with the systemic administration of a low-temperature sensitive liposomal formulation of doxorubicin (LTSL-Dox) using a relevant model for(More)
Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drugs in vivo and(More)
When exposed to sufficiently high ultrasound pressures, microbubbles can be generated spontaneously in tissue and undergo inertial cavitation where collapses result in physical effects. These effects range from petechial haemorrhage to complete cellular disruption, termed Histotripsy, depending on ultrasound parameters. This presentation will explore the(More)
We present experimental results from the application of terahertz time-domain spectroscopy in diagnosis of scald burns in a standardized porcine model in a clinical Operating Room setting. Superficial, deep partial-thickness and full-thickness burns were differentiated according to the spectral information between 0.2 and 0.8 THz. The severity of wounds(More)
An ektoprosthesis with a synchronically movable, electronically controlled eyelid has been developed. A suitable trigger-signal is derived from the movement of the natural contralateral eyelid. The miniaturized electronic processing unit is intergrated into the spectracle frame. The artificial eyelid is moved by an electromagnet situated in the orbital(More)
Background/introduction Most current HIFU approaches to treat liver tumors rely on thermal tissue ablation. Challenges still remain that prevent widespread clinical application of this technology including long treatment times, side effects such as skin burns, attenuation and aberration by ribs, heat diffusion and perfusion. Recently, a new method named(More)
The preclinical models of pancreatic adenocarcinoma provide an alternative means for determining the mechanisms of malignancy and possibilities for treatments, thus representing a resource of immense potential for cancer treatment in medicine. To evaluate different tumor models, quantifiable magnetic resonance imaging (MRI) techniques can play a significant(More)
PURPOSE High intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that can thermally ablate tumors. Boiling histotripsy (BH) is a HIFU approach that can emulsify tissue in a few milliseconds. Lesion volume and temperature effects for different BH sonication parameters are currently not well characterized. In this work, lesion volume,(More)
  • 1