Navid Arjmand

Learn More
To resolve the trunk redundancy to determine muscle forces, spinal loads, and stability margin in isometric forward flexion tasks, combined in vivo-numerical model studies was undertaken. It was hypothesized that the passive resistance of both the ligamentous spine and the trunk musculature plays a crucial role in equilibrium and stability of the system.(More)
BACKGROUND Comparative studies between single-joint electromyography (EMG)- and optimization-driven models of the human spine in estimating trunk muscle and spinal compression forces have not been conclusive. Due to associated implications in ergonomic applications as well as prevention and treatment managements of low-back disorders, there is a need to(More)
STUDY DESIGN The load in active and passive spinal components as well as the stability margin in standing postures +/- load in hands are studied using both computational model and in vivo studies. OBJECTIVE To investigate muscle activity, spinal loads, and system stability in standing postures. SUMMARY OF BACKGROUND DATA Study of the human trunk yields(More)
BACKGROUND An improved assessment of risk of spinal injury during lifting activities depends on an accurate estimation of trunk muscle forces, spinal loads and stability margin which in turn requires, amongst others, an accurate description of trunk muscle geometries. The lines of action of erector spinae muscles are often assumed to be linear despite the(More)
Accurate estimation of muscle forces in various occupational tasks is critical for a reliable evaluation of spinal loads and subsequent assessment of risk of injury and management of back disorders. The majority of biomechanical models of multi-segmental spine estimate muscle forces and spinal loads based on the balance of net moments at a single level with(More)
The role of intra-abdominal pressure (IAP) in unloading the spine has remained controversial. In the current study, a novel kinematics-based approach along with a nonlinear finite-element model were iteratively used to calculate muscle forces, spinal loads, and stability margin under prescribed postures and loads measured in in vivo studies. Four coactivity(More)
Despite the well-recognized role of lifting in back injuries, the relative biomechanical merits of squat versus stoop lifting remain controversial. In vivo kinematics measurements and model studies are combined to estimate trunk muscle forces and internal spinal loads under dynamic squat and stoop lifts with and without load in hands. Measurements were(More)
STUDY DESIGN In vivo measurements and model studies are combined to investigate the role of lumbar posture in static lifting tasks. OBJECTIVES Identification of the role of changes in the lumbar posture on muscle forces, internal loads, and system stability in static lifting tasks with and without load in hands. SUMMARY OF BACKGROUND DATA Despite the(More)
The effect of eight different cost functions on trunk muscle forces, spinal loads and stability was investigated. Kinematics-based approach combined with nonlinear finite element modeling and optimization were used to model in vivo measurements on isometric forward flexions at approximately 40 degrees and approximately 65 degrees in sagittal plane with or(More)
To circumvent the existing shortcoming of optimisation algorithms in trunk biomechanical models, both agonist and antagonist trunk muscle stresses to different powers are introduced in a novel objective function to evaluate the role of abdominal muscles in trunk stability and spine compression. This coupled objective function is introduced in our(More)