Learn More
To resolve the trunk redundancy to determine muscle forces, spinal loads, and stability margin in isometric forward flexion tasks, combined in vivo-numerical model studies was undertaken. It was hypothesized that the passive resistance of both the ligamentous spine and the trunk musculature plays a crucial role in equilibrium and stability of the system.(More)
BACKGROUND Comparative studies between single-joint electromyography (EMG)- and optimization-driven models of the human spine in estimating trunk muscle and spinal compression forces have not been conclusive. Due to associated implications in ergonomic applications as well as prevention and treatment managements of low-back disorders, there is a need to(More)
STUDY DESIGN The load in active and passive spinal components as well as the stability margin in standing postures +/- load in hands are studied using both computational model and in vivo studies. OBJECTIVE To investigate muscle activity, spinal loads, and system stability in standing postures. SUMMARY OF BACKGROUND DATA Study of the human trunk yields(More)
The role of intra-abdominal pressure (IAP) in unloading the spine has remained controversial. In the current study, a novel kinematics-based approach along with a nonlinear finite-element model were iteratively used to calculate muscle forces, spinal loads, and stability margin under prescribed postures and loads measured in in vivo studies. Four coactivity(More)
BACKGROUND An improved assessment of risk of spinal injury during lifting activities depends on an accurate estimation of trunk muscle forces, spinal loads and stability margin which in turn requires, amongst others, an accurate description of trunk muscle geometries. The lines of action of erector spinae muscles are often assumed to be linear despite the(More)
Despite recent advances in modeling of the human spine, simplifying assumptions are still required to tackle complexities. Such assumptions need to be scrutinized to assess their likely impacts on predictions. A comprehensive comparison of muscle forces and spinal loads estimated by a single-joint (L5-S1) optimisation-assisted EMG-driven (EMGAO) and a(More)
A hallmark of more advanced models is their higher details of trunk muscles represented by a larger number of muscles. The question is if in reality we control these muscles individually as independent agents or we control groups of them called "synergy". To address this, we employed a 3-D biomechanical model of the spine with 18 trunk muscles that(More)
BACKGROUND Activities involving axial trunk rotations/moments are common and are considered as risk factors for low back disorders. Previous biomechanical models have failed to accurately estimate the trunk maximal axial torque exertion. Moreover, the trunk stability under maximal torque exertions has not been investigated. METHODS A nonlinear(More)
STUDY DESIGN In vivo measurements and model studies are combined to investigate the role of lumbar posture in static lifting tasks. OBJECTIVES Identification of the role of changes in the lumbar posture on muscle forces, internal loads, and system stability in static lifting tasks with and without load in hands. SUMMARY OF BACKGROUND DATA Despite the(More)
Response surface methodology is used to establish robust and user-friendly predictive equations that relate responses of a complex detailed trunk finite element biomechanical model to its input variables during sagittal symmetric static lifting activities. Four input variables (thorax flexion angle, lumbar/pelvis ratio, load magnitude, and load position)(More)