Learn More
Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic(More)
PQBP1 (polyglutamine tract-binding protein 1) is a causative gene for a relatively frequent X-linked syndromic and non-syndromic mental retardation (MR). To analyze behavioral abnormalities of these patients from molecular basis, we developed a knock-down (KD) mouse model. The KD mice possess a transgene expressing 498 bp double-strand RNA that is(More)
Mutations of PQBP-1 (polyglutamine binding protein-1) have been shown recently to cause human mental retardation accompanied by microcephaly at a high frequency. As a first step towards understanding the molecular basis of this developmental anomaly, we analysed developmental expression of PQBP-1 by in situ hybridization, immunohistochemistry and Western(More)
Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis,(More)
Nuclear dysfunction is a key feature of the pathology of polyglutamine (polyQ) diseases. It has been suggested that mutant polyQ proteins impair functions of nuclear factors by interacting with them directly in the nucleus. However, a systematic analysis of quantitative changes in soluble nuclear proteins in neurons expressing mutant polyQ proteins has not(More)
Non-cell-autonomous effect of mutant proteins expressed in glia has been implicated in several neurodegenerative disorders, whereas molecules mediating the toxicity are currently not known. We identified a novel molecule named multiple alpha-helix protein located at ER (Maxer) downregulated by mutant ataxin-1 (Atx1) in Bergmann glia. Maxer is an endoplasmic(More)
  • 1