Natheer Khasawneh

Learn More
In this work, an efficient automated new approach for sleep stage identification based on the new standard of the American academy of sleep medicine (AASM) is presented. The propose approach employs time-frequency analysis and entropy measures for feature extraction from a single electroencephalograph (EEG) channel. Three time-frequency techniques were(More)
This work presents a new methodology for automated sleep stage identification in neonates based on the time frequency distribution of single electroencephalogram (EEG) recording and artificial neural networks (ANN). Wigner-Ville distribution (WVD), Hilbert-Hough spectrum (HHS) and continuous wavelet transform (CWT) time frequency distributions were used to(More)
This paper describes a new method for automatic detection of obstructive sleep apnea (OSA) based on artificial neural networks (ANN) using regular electrocardiogram (ECG) recordings. ECG signals were pre-processed and segmented to extract the P-waves; then three P-wave features were extracted: the P-wave duration (T ( p )), the P-wave dispersion (P ( d )),(More)