Learn More
The binocular region of mouse visual cortex is strongly dominated by inputs from the contralateral eye. Here we show in adult mice that depriving the dominant contralateral eye of vision leads to a persistent, NMDA receptor-dependent enhancement of the weak ipsilateral-eye inputs. These data provide in vivo evidence for metaplasticity as a mechanism for(More)
We describe a form of experience-dependent response enhancement in the visual cortex of awake mice. Repeated presentations of grating stimuli of a single orientation result in a persistent enhancement of responses evoked by the test stimulus. Response potentiation is specific to the orientation of the test stimulus, develops gradually over the course of(More)
The recoding of diverse sensory and motor signals by granule cells (GCs) is probably critical for the function of cerebellar circuits, yet the nature of these transformations and their significance for cerebellar information processing remain poorly understood. In cerebellum-like structures in fish, anti-Hebbian plasticity at parallel fiber synapses(More)
The NMDA receptor (NMDAR) is a heteromer comprised of NR1 and NR2 subunits. Mice that overexpress the NR2B subunit exhibit enhanced hippocampal LTP, prolonged NMDAR currents, and improved memory ( Tang et al., 1999). In the current study, we explored visual cortex plasticity and NMDAR function in NR2B overexpressing transgenic mice. Unlike the hippocampus,(More)
The nervous systems of most vertebrates include both the cerebellum and structures that are architecturally similar to the cerebellum. The cerebellum-like structures are sensory structures that receive input from the periphery in their deep layers and parallel fiber input in their molecular layers. This review describes these cerebellum-like structures and(More)
Mormyrid electric fish are a model system for understanding how neural circuits predict the sensory consequences of motor acts. Medium ganglion cells in the electrosensory lobe create negative images that predict sensory input resulting from the fish's electric organ discharge (EOD). Previous studies have shown that negative images can be created through(More)
Cerebellum-like structures process peripheral sensory information in combination with parallel fiber inputs that convey information about sensory and motor contexts. Activity-dependent changes in the strength of parallel fiber synapses act as an adaptive filter, removing predictable features of the sensory input. In the electrosensory lobe (ELL) of mormyrid(More)
This review focuses on recent progress in understanding mechanisms for filtering self-generated sensory signals in cerebellum-like circuits in fish and mammals. Recent in vitro studies in weakly electric gymnotid fish have explored the interplay among anti-Hebbian plasticity, synaptic dynamics, and feedforward inhibition in canceling self-generated(More)
Sensory information is often acquired through active exploration. However, an animal's own movements may result in changes in patterns of sensory input that could interfere with the detection and processing of behaviorally relevant sensory signals. Neural mechanisms for predicting the sensory consequences of movements are thus likely to be of general(More)
We tested the role of group I mGluRs in the induction of long-term depression (LTD) in the visual cortex, using the novel mGluR antagonist LY341495 and mice lacking mGluR5, the predominant phosphoinositide (PI)-linked mGluR in the visual cortex. We find that LY341495 is a potent blocker of glutamate-stimulated PI hydrolysis in visual cortical(More)