Nathaniel M. Gabor

Learn More
We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and(More)
We observed highly efficient generation of electron-hole pairs due to impact excitation in single-walled carbon nanotube p-n junction photodiodes. Optical excitation into the second electronic subband E22 leads to striking photocurrent steps in the device I-V(SD) characteristics that occur at voltage intervals of the band-gap energy E(GAP)/e. Spatially and(More)
We investigate the optoelectronic response of a graphene single-bilayer interface junction using photocurrent (PC) microscopy. We measure the polarity and amplitude of the PC while varying the Fermi level by tuning a gate voltage. These measurements show that the generation of PC is by a photothermoelectric effect. The PC displays a factor of approximately(More)
Understanding the physics of low-dimensional systems and the operation of next-generation electronics will depend on our ability to measure the electrical properties of nanomaterials at terahertz frequencies ( approximately 100 GHz to 10 THz). Single-walled carbon nanotubes are prototypical one-dimensional nanomaterials because of their unique band(More)
While the statics of many simple physical systems reproduce the striking number-theoretical patterns found in the phyllotaxis of living beings, their dynamics reveal unusual excitations: multiple classical rotons and a large family of interconverting topological solitons. As we introduce those, we also demonstrate experimentally for the first time Levitov's(More)
We report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p-n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high(More)
The appearance of mathematical regularities in the disposition of leaves on a stem, scales on a pine-cone, and spines on a cactus has puzzled scholars for millennia; similar so-called phyllotactic patterns are seen in self-organized growth, polypeptides, convection, magnetic flux lattices and ion beams. Levitov showed that a cylindrical lattice of repulsive(More)
Ultrafast photocurrent measurements are performed on individual carbon nanotube p-i-n photodiodes. The photocurrent response to subpicosecond pulses separated by a variable time delay Δt shows strong photocurrent suppression when two pulses overlap (Δt=0). The picosecond-scale decay time of photocurrent suppression scales inversely with the applied bias(More)
8–14. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene–boron nitride–graphene (G–BN–G) vdW heterostructure 15–17 , through which optically excited(More)
Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light energy harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light-harvesting photocell lead to inefficient energy storage in conventional solar(More)
  • 1