Nathaniel Kinsey

Learn More
We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of the plasmon resonance with an applied electric field. The(More)
A high-temperature stable broadband plasmonic absorber is designed, fabricated, and optically characterized. A broadband absorber with an average high absorption of 95% and a total thickness of 240 nm is fabricated, using a refractory plasmonic material, titanium nitride. This absorber integrates both the plasmonic resonances and the dielectric-like loss.(More)
Transparent conducting oxides have recently gained great attention as CMOS-compatible materials for applications in nanophotonics due to their low optical loss, metal-like behavior, versatile/tailorable optical properties, and established fabrication procedures. In particular, aluminum-doped zinc oxide (AZO) is very attractive because its dielectric(More)
An insulator-metal-insulator plasmonic interconnect using TiN, a CMOS-compatible material, is proposed and investigated experimentally at the telecommunication wavelength of 1.55 µm. The TiN waveguide was shown to obtain propagation losses less than 0.8 dB/mm with a mode size of 9.8 µm on sapphire, which agree well with theoretical predictions. A(More)
New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material(More)
Hyperbolic metamaterials (HMMs) have shown great promise in the optical and quantum communities due to their extremely large, broadband photonic density of states. This feature is a direct consequence of supporting photonic modes with unbounded k-vectors. While these materials support such high-k waves, they are intrinsically confined inside the HMM and(More)
– In this work, a design of ultra-compact plasmonic modulator is proposed and numerically analyzed. The device layout utilizes alternative plasmonic materials such as transparent conducting oxides and titanium nitride which potentially can be applied for CMOS compatible process. The modulation is obtained by varying the carrier concentration of the(More)