Nathaniel J. Traaseth

Learn More
Phospholamban (PLN) is an essential regulator of cardiac muscle contractility. The homopentameric assembly of PLN is the reservoir for active monomers that, upon deoligomerization form 1:1 complexes with the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), thus modulating the rate of calcium uptake. In lipid bilayers and micelles, monomeric PLN exists in(More)
Phospholamban (PLN), a single-pass membrane protein, regulates heart muscle contraction and relaxation by reversible inhibition of the sarco(endo)plasmic reticulum Ca-ATPase (SERCA). Studies in detergent micelles and oriented lipid bilayers have shown that in its monomeric form PLN adopts a dynamic L shape (bent or T state) that is in conformational(More)
RF heating of solid-state biological samples is known to be a destabilizing factor in high-field NMR experiments that shortens the sample lifetime by continuous dehydration during the high-power cross-polarization and decoupling pulses. In this work, we describe specially designed, large volume, low-E 15N-1H solid-state NMR probes developed for 600 and 900(More)
The goal of this study was to explore the occurrence of nitrated proteins in mitochondria given that these organelles are endowed with a mitochondrial nitric oxide (NO.-) synthase and considering the important role that mitochondria have in energy metabolism. Our hypothesis is that nitration of proteins constitutes a posttranslational modification by which(More)
 Dityrosine is found in several proteins as a product of UV irradiation, γ-irradiation, aging, exposure to oxygen free radicals, nitrogen dioxide, peroxynitrite, and lipid hydroperoxides. Interest of dityrosine in proteins is based on its potential as a specific marker for oxidatively damaged proteins and their selective proteolysis, hence it could be used(More)
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN(More)
Allosteric signaling in proteins requires long-range communication mediated by highly conserved residues, often triggered by ligand binding. In this article, we map the allosteric network in the catalytic subunit of protein kinase A using NMR spectroscopy. We show that positive allosteric cooperativity is generated by nucleotide and substrate binding during(More)
Phospholamban (PLN) and sarcolipin (SLN) are two single-pass membrane proteins that regulate Ca2+-ATPase (SERCA), an ATP-driven pump that translocates calcium ions into the lumen of the sarcoplasmic reticulum, initiating muscle relaxation. Both proteins bind SERCA through intramembrane interactions, impeding calcium translocation. While phosphorylation of(More)
Phosphorylation by protein kinase A and dephosphorylation by protein phosphatase 1 modulate the inhibitory activity of phospholamban (PLN), the endogenous regulator of the sarco(endo)plasmic reticulum calcium Ca(2+) ATPase (SERCA). This cyclic mechanism constitutes the driving force for calcium reuptake from the cytoplasm into the myocite lumen, regulating(More)
Phospholamban (PLB) is a 52 amino acid membrane-endogenous regulator of the sarco(endo)plasmic calcium adenosinetriphosphatase (SERCA) in cardiac muscle. PLB's phosphorylation and dephosphorylation at S16 modulate its regulatory effect on SERCA by an undetermined mechanism. In this paper, we use multidimensional (1)H/(15)N solution NMR methods to establish(More)