Nathaniel Beagley

Learn More
The resurgence of current and upcoming multithreaded architectures and programming models led us to conduct a detailed study to understand the potential of these platforms to increase the performance of data-intensive, irregular scientific applications. Our study is based on a power system state estimation application and a novel anomaly detection(More)
High-throughput (HTP) technologies offer the capability to evaluate the genome, proteome, and metabolome of an organism at a global scale. This opens up new opportunities to define complex signatures of disease that involve signals from multiple types of biomolecules. However, integrating these data types is difficult due to the heterogeneity of the data.(More)
Most current approaches to automatic pathway generation are based on a reverse engineering approach in which pathway plausibility is solely derived from gene expression data and not independently validated. Alternative approaches use prior biological knowledge to validate automatically inferred pathways, but the prior knowledge is usually not sufficiently(More)
UNLABELLED Data fusion methods are powerful tools for evaluating experiments designed to discover measurable features of directly unobservable systems. We describe an interactive software platform, Visual Integration for Bayesian Evaluation, that ingests or creates bayesian posterior probability matrices, performs data fusion and allows the user to(More)
The problem of counting specified combinations of a given set of variables arises in many statistical and data mining applications. To solve this problem, we introduce the PDtree data structure, which avoids exponential time and space complexity associated with prior work by allowing user specification of the tree structure. A straightforward(More)
In recent years the benefits of fusing signatures extracted from large amounts of distributed and/or heterogeneous data sources have been largely documented in various problems ranging from biological protein function prediction to cyberspace monitoring. In spite of significant progress in information fusion research, there is still no formal theoretical(More)
Most current approaches to automatic pathway generation are based on a reverse engineering approach in which pathway plausibility is solely derived from microarray gene expression data. These approaches tend to lack in generality and offer no independent validation as they are too reliant on the pathway observables that guide pathway generation. By(More)
Global climate researchers rely upon many forms of sensor data and analytical methods to help profile subtle changes in climate conditions. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program provides researchers with curated Value Added Products (VAPs) resulting from continuous instrumentation streams, data fusion, and analytical(More)