Learn More
P hytoremediation, the use of vegetation for the in situ treatment of contaminated soils and sediments, is an emerging technology that promises effective and inexpensive cleanup of certain hazardous waste sites. The technology has already been shown to be effective in a number of full-scale and pilot studies. Phytoremediation is most suited for sites with(More)
Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were(More)
Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Sequencing of SAGE libraries from control and RDX-exposed root tissues revealed induction of genes known to respond to a variety of general stresses. Among the highly induced genes(More)
An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the pure acid phosphatase resolved a single protein band that migrated(More)
The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (Elodea canadensis). The decay profile of these OP pesticides from the aqueous(More)
The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aqueous culture medium followed first-order kinetics for all three plants. During(More)
The aim of this study was to demonstrate the potential for aquatic plants and their associated microbes to bioremediate wetland sites contaminated with 2,4,6-trinitrotoluene (TNT). The transformation of TNT was studied using both wild and axenically grown isolates of Myriophyllum aquaticum (parrot feather). Differences in TNT transformation rates and(More)
The second-order rate constants for the microbial transformation of a series of phenols were correlated with the physicochemical properties of the phenols. The compounds studied were phenol, p-methylphenol, p-chlorophenol, p-bromophenol, p-cyanophenol, p-nitrophenol, p-acetylphenol, and p-methoxyphenol. Phenol-grown cells of Pseudomonas putida U transformed(More)
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and(More)