Learn More
We explored the effects of aging on 2 large-scale brain networks, the default mode network (DMN) and the task-positive network (TPN). During functional magnetic resonance imaging scanning, young and older participants carried out 4 visual tasks: detection, perceptual matching, attentional cueing, and working memory. Accuracy of performance was roughly(More)
Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex(More)
A variety of preprocessing techniques are available to correct subject-dependant artifacts in fMRI, caused by head motion and physiological noise. Although it has been established that the chosen preprocessing steps (or "pipeline") may significantly affect fMRI results, it is not well understood how preprocessing choices interact with other parts of the(More)
Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1)(More)
The effects of physiological noise may significantly limit the reproducibility and accuracy of BOLD fMRI. However, physiological noise evidences a complex, undersampled temporal structure and is often non-orthogonal relative to the neuronally-linked BOLD response, which presents a significant challenge for identifying and removing such artifact. This paper(More)
BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the "pipeline")(More)
BACKGROUND Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy(More)
Writing and drawing are understudied with fMRI, partly for lack of a device that approximates these behaviors well while supporting task feedback and quantitative behavioral logging in the confines of the magnet. Consequently, we developed a tablet based on touchscreen technology that is accurate, reliable, relatively inexpensive, and fMRI compatible. After(More)
The presence of physiological noise in functional MRI can greatly limit the sensitivity and accuracy of BOLD signal measurements, and produce significant false positives. There are two main types of physiological confounds: (1) high-variance signal in non-neuronal tissues of the brain including vascular tracts, sinuses and ventricles, and (2) physiological(More)