Learn More
We describe and analyze a simple and effective iterative algorithm for solving the optimization problem cast by Support Vector Machines (SVM). Our method alternates between stochastic gradient descent steps and projection steps. We prove that the number of iterations required to obtain a solution of accuracy ε is Õ(1/ε). In contrast, previous(More)
Maximum Margin Matrix Factorization (MMMF) was recently suggested (Srebro et al., 2005) as a convex, infinite dimensional alternative to low-rank approximations and standard factor models. MMMF can be formulated as a semi-definite programming (SDP) and learned using standard SDP solvers. However, current SDP solvers can only handle MMMF problems on matrices(More)
We study the common problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low-rank approximation problems, which, unlike their unweighted version, do not admit a closed-form solution in general. We analyze, in addition , the nature of locally optimal solutions that arise(More)
We continue the investigation of natural conditions for a similarity function to allow learning, without requiring the similarity function to be a valid kernel , or referring to an implicit high-dimensional space. We provide a new notion of a " good similarity function " that builds upon the previous definition of Balcan and Blum (2006) but improves on it(More)
This paper suggests a method for multiclass learning with many classes by simultaneously learning shared characteristics common to the classes, and predictors for the classes in terms of these characteristics. We cast this as a convex optimization problem, using <i>trace-norm</i> regularization and study gradient-based optimization both for the linear case(More)
We study the rank, trace-norm and max-norm as complexity measures of matrices, focusing on the problem of fitting a matrix with matrices having low complexity. We present generalization error bounds for predicting unobserved entries that are based on these measures. We also consider the possible relations between these measures. We show gaps between them,(More)
The problem of characterizing learnability is the most basic question of statistical learning theory. A fundamental and long-standing answer, at least for the case of supervised classification and regression, is that learnability is equivalent to uniform convergence of the empirical risk to the population risk, and that if a problem is learnable, it is(More)