Learn More
Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO(2) emissions in the(More)
At present, solar energy conversion technologies face cost and scalability hurdles in the technologies required for a complete energy system. To provide a truly widespread primary energy source, solar energy must be captured, converted, and stored in a cost-effective fashion. New developments in nanotechnology, biotechnology, and the materials and physical(More)
ENGenious: On the CCSER website, you state that your aim is to transform the industrial world from one that is powered by fossil fuel to one that is powered by sunlight. Harry Atwater: The question is: how realistic is that? ENGenious: Yes, how realistic is that, and how are you going to do that? Atwater: Ultimately, all energy on Earth emanates, directly(More)
Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array's(More)
Single-nanowire solar cells were created by forming rectifying junctions in electrically contacted vapor-liquid-solid-grown Si nanowires. The nanowires had diameters in the range of 200 nm to 1.5 microm. Dark and light current-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response measurements were(More)
In the presence of nanoscale silver island arrays, silicon quantum dots exhibit up to sevenfold luminescence enhancements at emission frequencies that correspond to the collective dipole plasmon resonance frequency of the Ag island array. Using electron-beam lithography to alter the pitch and particle diameter, this wavelength-selective enhancement can be(More)
energy—enough to power the great oceanic and atmospheric currents, the cycle of evaporation and condensation that brings fresh water inland and drives river flow, and the typhoons , hurricanes, and tornadoes that so easily destroy the natural and built landscape. The San Francisco earthquake of 1906, with magnitude 7.8, released an estimated 10 17 joules of(More)
Arrays of B-doped p-Si microwires, diffusion-doped with P to form a radial n(+) emitter and subsequently coated with a 1.5-nm-thick discontinuous film of evaporated Pt, were used as photocathodes for H(2) evolution from water. These electrodes yielded thermodynamically based energy-conversion efficiencies >5% under 1 sun solar simulation, despite absorbing(More)
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire(More)