Learn More
For future ultrafast all-optical networks, new optical devices are required that directly manipulate communication channels to shift their wavelength over the bandwidth of an optical fiber (50THz). 1,2 Current proposed solutions based on nonlinear processes, however, suffer from small efficiencies owing to low nonlinear susceptibilities. 3 Here, we(More)
We present a study on the intersublevel spacings of electrons and holes in a single layer of InAs self-assembled quantum dots. We use Fourier transform infrared transmission spectroscopy via a density chopping scheme for direct experimental observation of the intersublevel spacings of electrons without any external magnetic field. Epitaxial,(More)
A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the(More)
We used a terahertz (THz) quantum cascade laser (QCL) as an integrated injection seeded source and amplifier for THz time-domain spectroscopy. A THz input pulse is generated inside a QCL by illuminating the laser facet with a near-IR pulse from a femtosecond laser and amplified using gain switching. The THz output from the QCL is found to saturate upon(More)
We probed, in the time domain, the THz electromagnetic radiation originating from spins in CdMnTe diluted magnetic semiconductor quantum wells containing high-mobility electron gas. Taking advantage of the efficient Raman generation process, the spin precession was induced by low power near-infrared pulses. We provide a full theoretical first-principles(More)