#### Filter Results:

- Full text PDF available (11)

#### Publication Year

1990

2009

- This year (0)
- Last 5 years (0)
- Last 10 years (7)

#### Publication Type

#### Co-author

#### Journals and Conferences

Learn More

- Nathan Geer, Bertrand Patureau-Mirand
- 2008

In this paper we give a re-normalization of the Reshetikhin-Turaev quantum invariants of links, by modified quantum dimensions. In the case of simple Lie algebras these modified quantum dimensions are proportional to the usual quantum dimensions. More interestingly we will give two examples where the usual quantum dimensions vanish but the modified quantum… (More)

- Nathan Geer
- 2005

Given a finite dimensional representation of a semisimple Lie algebra there are two ways of constructing link invariants: 1) quantum group invariants using the R-matrix, 2) the Kontsevich universal link invariant followed by the Lie algebra based weight system. Le and Murakami showed that these two link invariants are the same. These constructions can be… (More)

- NATHAN GEER
- 2008

For every semi-simple Lie algebra g one can construct the DrinfeldJimbo algebra U h (g). This algebra is a deformation Hopf algebra defined by generators and relations. To study the representation theory of U h (g), Drinfeld used the KZ-equations to construct a quasi-Hopf algebra Ag . He proved that particular categories of modules over the algebras U h (g)… (More)

- T F Zuck, G A Rose, U J Dumaswala, N J Geer
- Transfusion
- 1990

Shortly after test kits for antibodies to the hepatitis C virus (HCV) were licensed in May of 1990, our medical community undertook a public education program encouraging previous transfusion recipients to see their physicians about the wisdom of being tested for anti-HCV. In response, 1034 samples were received for testing. All samples repeatably reactive… (More)

- Nathan Geer, Bertrand Patureau-Mirand
- 2006

In this paper we construct a multivariable link invariant arising from the quantum group associated to the special linear Lie superalgebra sl(2|1). The usual quantum group invariant of links associated to (generic) representations of sl(2|1) is trivial. However, we modify this construction and define a nontrivial link invariant. This new invariant can be… (More)

- NATHAN GEER, NICOLAI RESHETIKHIN
- 2009

We show how to define invariants of graphs related to quantum sl2 when the graph has more then one connected component and components are colored by blocks of representations with zero quantum dimensions. Mathematics Subject Classification (2000). 17B37, 57R56, 46A63.

- PAVEL ETINGOF, NATHAN GEER
- 2006

The famous Drinfeld-Kohno theorem for simple Lie algebras states that the monodromy representation of the Knizhnik-Zamolodchikov equations for these Lie algebras expresses explicitly via R-matrices of the corresponding Drinfeld-Jimbo quantum groups. This result was generalized by the second author to simple Lie superalgebras of type A-G. In this paper, we… (More)

- NATHAN GEER
- 2008

In this paper we give a re-normalization of the supertrace on the category of representations of Lie superalgebras of type I, by a kind of modified superdimension. The genuine superdimensions and supertraces are generically zero. However, these modified superdimensions are non-zero and lead to a kind of supertrace which is non-trivial and invariant. As an… (More)

- NATHAN GEER
- 2009

We show that the coefficients of the re-normalized link invariants of [3] are Vassiliev invariants which give rise to a canonical family of weight systems.

- Nathan Geer, Bertrand Patureau-Mirand
- 2006

In this paper we construct new links invariants from a type I basic Lie superalgebra g. The construction uses the existence of an unexpected replacement of the vanishing quantum dimension of typical module, by non-trivial “fake quantum dimensions.” Using this, we get a multivariable link invariant associated to any one parameter family of irreducible… (More)