Learn More
Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task-switching paradigm, including a total of 110 participants. In(More)
The human ability to flexibly alternate between tasks represents a central component of cognitive control. Neuroimaging studies have linked task switching with a diverse set of prefrontal cortex (PFC) regions, but the contributions of these regions to various forms of cognitive flexibility remain largely unknown. Here, subjects underwent functional brain(More)
High cardiorespiratory fitness (CRF) is an important protective factor reducing the risk of cardiac-related disability and mortality. Recent research suggests that high CRF also has protective effects on the brain's macrostructure and functional response. However, little is known about the potential relationship between CRF and the brain's white matter (WM)(More)
Recent evidence suggests that lifelong bilingualism may contribute to cognitive reserve (CR) in normal aging. However, there is currently no neuroimaging evidence to suggest that lifelong bilinguals can retain normal cognitive functioning in the face of age-related neurodegeneration. Here we explored this issue by comparing white matter (WM) integrity and(More)
One of our highest evolved functions as human beings is our capacity to switch between multiple tasks effectively. A body of research has identified a distributed frontoparietal network of brain regions which contribute to task switching. However, relatively less is known about whether some brain regions may contribute to switching in a domain-general(More)
Increased frontal cortex activation during cognitive task performance is common in aging but remains poorly understood. Here we explored patterns of age-related frontal brain activations under multiple task performance conditions and their relationship to white matter (WM) microstructure. Groups of younger (N = 28) and older (N = 33) participants completed(More)
Neuroimaging biomarkers that precede cognitive decline have the potential to aid early diagnosis of Alzheimer's disease (AD). A body of diffusion tensor imaging (DTI) work has demonstrated declines in white matter (WM) microstructure in AD and its typical prodromal state, amnestic mild cognitive impairment. The present review summarizes recent evidence(More)
Cross-sectional research has shown that older adults tend to have different frontal cortex activation patterns, poorer brain structure, and lower task performance than younger adults. However, relationships between longitudinal changes in brain function, brain structure, and cognitive performance in older adults are less well understood. Here we present the(More)
The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or(More)
A growing body of evidence indicates that cardiorespiratory fitness attenuates some age-related cerebral declines. However, little is known about the role that myocardial function plays in this relationship. Brain regions with high resting metabolic rates, such as the default mode network (DMN), may be especially vulnerable to age-related declines in(More)