Nathan C. Sheffield

Learn More
DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We(More)
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the(More)
Epigenetic mechanisms such as chromatin accessibility impact transcription factor binding to DNA and transcriptional specificity. The androgen receptor (AR), a master regulator of the male phenotype and prostate cancer pathogenesis, acts primarily through ligand-activated transcription of target genes. Although several determinants of AR transcriptional(More)
After finishing a human genome reference sequence in 2002, the genomics community has turned to the task of interpreting it. A primary focus is to identify and characterize not only protein-coding genes, but all functional elements in the genome. The effort includes both individual investigators and large-scale projects like the Encyclopedia of DNA Elements(More)
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to map histone marks and transcription factor binding throughout the genome. Here we present ChIPmentation, a method that combines chromatin immunoprecipitation with sequencing library preparation by Tn5 transposase ('tagmentation'). ChIPmentation introduces sequencing-compatible(More)
UNLABELLED Genomic datasets are often interpreted in the context of large-scale reference databases. One approach is to identify significantly overlapping gene sets, which works well for gene-centric data. However, many types of high-throughput data are based on genomic regions. Locus Overlap Analysis (LOLA) provides easy and automatable enrichment analysis(More)
Most genome-wide assays provide averages across large numbers of cells, but recent technological advances promise to overcome this limitation. Pioneering single-cell assays are now available for genome, epigenome, transcriptome, proteome, and metabolome profiling. Here, we describe how these different dimensions can be combined into multi-omics assays that(More)
BACKGROUND Recent advancements in sequencing and computational technologies have led to rapid generation and analysis of high quality genetic data. Such genetic data have achieved wide acceptance in studies of historic human population origins and admixture. However, in studies relating to small, recent admixture events, genetic factors such as historic(More)
  • 1