Nathan A. Lewis

Learn More
BACKGROUND The production of reactive oxygen (ROS) and nitrogen species (RNS) is a fundamental feature of mammalian physiology, cellular respiration and cell signalling, and essential for muscle function and training adaptation. Aerobic and anaerobic exercise results in alterations in redox homeostasis (ARH) in untrained, trained and well trained athletes.(More)
UNLABELLED The longitudinal monitoring of oxidative stress (OS) in athletes may enable the identification of fatigued states and underperformance. The application of OS biomarker monitoring programs in sport are hindered by reliability and repeatability of in-the-field testing tools, the turnaround of results, and the understanding of biological variation(More)
The coach and interdisciplinary sports science and medicine team strive to continually progress the athlete's performance year on year. In structuring training programmes, coaches and scientists plan distinct periods of progressive overload coupled with recovery for anticipated performances to be delivered on fixed dates of competition in the calendar year.(More)
PURPOSE This case study of an international rower examines a diagnosis of Unexplained Under Performance Syndrome (UUPS or Overtraining Syndrome) describing a full recovery and return to elite competition the same year. METHODS On diagnosis and 4 and 14 months post-diagnosis, detailed assessments including physiological, nutritional, and biomarkers were(More)
Exercise causes alterations in redox homeostasis (ARH). Measuring ARH in elite athletes may aid in the identification of training tolerance, fatigued states, and underperformance. To the best of our knowledge, no studies have examined ARH in elite male and female distance runners at sea level. The monitoring of ARH in athletes is hindered by a lack of(More)
  • 1