Nathan A Hagen

Learn More
We correct an error in the original manuscript, where an unrecognized assumption was made about the relationship between the out-of-focus light and the in-focus light. We summarize the condition under which the assumption may still hold, and mention alternative methods researchers can use to obtain accurate quantitative sectioning.
A snapshot Image Mapping Spectrometer (IMS) with high sampling density is developed for hyperspectral microscopy, measuring a datacube of dimensions 285 x 285 x 60 (x, y, lambda). The spatial resolution is approximately 0.45 microm with a FOV of 100 x 100 microm(2). The measured spectrum is from 450 nm to 650 nm and is sampled by 60 spectral channels with(More)
Computed tomographic imaging spectrometers measure the spectrally resolved image of an object scene in an entirely different manner from traditional whisk-broom or push-broom systems, and thus their noise behavior and data artifacts are unfamiliar. We review computed tomographic imaging spectrometry (CTIS) measurement systems and analyze their performance,(More)
1. Recombinant human cytochrome p450 (rhCYP) has become an important screening model in drug metabolism studies due to the high cost of human and animal hepatic tissue. Until now, rhCYPs have been evaluated and used as separate forms, but a mixture of CYP forms comparable with the human liver could be of value in early drug discovery. 2. In the present(More)
While lenses of aperture less than 1000lambda frequently form images with pixel counts approaching the space-bandwidth limit, only heroic designs approach the theoretical information capacity at larger scales. We propose to use the field processing capabilities of small-scale secondary lens arrays to correct aberrations due to larger scale objective lenses,(More)
A snapshot imaging Mueller matrix polarimeter (SIMMP) is theoretically described and empirically demonstrated through simulation. Spatial polarization fringes are localized onto a sample by incorporating polarization gratings (PGs) into a polarization generator module. These fringes modulate the Mueller matrix (MM) components of the sample, which are(More)
We present a depth-resolved Image Mapping Spectrometer (IMS) which is capable of acquiring 4D (x, y, z, λ) datacubes. Optical sectioning is implemented by structured illumination. The device's spectral imaging performance is demonstrated in a multispectral microsphere and mouse kidney tissue fluorescence imaging experiment. We also compare quantitatively(More)
Image mapping spectrometry (IMS) is a hyperspectral imaging technique that simultaneously captures spatial and spectral information about an object in real-time. We present a new calibration procedure for the IMS as well as the first detailed evaluation of system performance. We correlate optical components and device calibration to performance metrics such(More)
The snapshot advantage is a large increase in light collection efficiency available to high-dimensional measurement systems that avoid filtering and scanning. After discussing this advantage in the context of imaging spectrometry, where the greatest effort towards developing snapshot systems has been made, we describe the types of measurements where it is(More)
A complete Fourier Transform Spectropolarimeter in the MWIR is demonstrated. The channeled spectral technique, originally developed by K. Oka, is implemented with the use of two Yttrium Vanadate (YVO(4)) crystal retarders. A basic mathematical model for the system is presented, showing that all the Stokes parameters are directly present in the(More)