Nathalie Strutz

Learn More
Chronic changes in neural activity trigger a variety of compensatory homeostatic mechanisms by which neurons maintain a normal level of synaptic input. Here we show that chronic activity blockade triggers a compensatory change in the abundance of GLR-1, a Caenorhabditis elegans glutamate receptor. In mutants lacking a voltage-dependent calcium channel(More)
Among the 18 ionotropic glutamate receptor subunits identified in the mammalian central nervous system, five (delta1, delta2, GluR7, chi2 and NR3A, formerly called NMDAR-L or chi1) reportedly fail to form functional ion channels in heterologous expression systems. Four of these subunits, delta1, delta2, chi2 and NR3A, have not even been shown to bind(More)
KCNQ1 channels underlie the slow delayed rectifier K+ current, mediate repolarization of cardiac action potentials, and are a potential therapeutic target for treatment of arrhythmia. (E)-(+)-N-[(3R)-2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl]-3-(2,4-dichlorophenyl)-2-propenamide [L-735821 (L-7)] is a potent blocker of KCNQ1 channels.(More)
Ionotropic glutamate receptor (GluR) expression and function is regulated through multiple pre- and post-translational mechanisms. We find that limited proteolytic cleavage of GluR3 at two distinct sites generates stable GluR3 short forms that are glycosylated and found in association with other full-length GluRs in the mouse brain and cultured primary(More)
The kainate receptors GluR6 and GluR7 differ considerably in their ion channel properties, despite sharing 86% amino acid sequence identity. When expressed in Xenopus oocytes GluR6 conducts large agonist-evoked currents, whereas GluR7 lacks measurable currents. In the present study, we localized the determinants that are responsible for the functional(More)
Kainate-binding proteins belong to an elusive class of putative ionotropic glutamate receptors that to date have not been shown to form functional ion channels in heterologous expression systems, despite binding glutamatergic agonists with high affinity. To test the hypothesis that inefficient or interrupted signal transduction from the ligand-binding site(More)
The halogenated willardiines are agonists at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptors. Although they differ only by the nature of the halogen substituent, they display marked differences in their efficacy to activate the receptor channel opening and in causing desensitization. We have studied the(More)
Recently, it has been shown that a single leucine-to-tyrosine mutation in the agonist binding domains of the homomerically expressed alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors GluR3 and GluR1 is sufficient to completely block receptor desensitization. In the present study we tested heteromeric subunit combinations of AMPA(More)
  • 1