Learn More
Brain homeostasis depends on the composition of both brain interstitial fluid and CSF. Whereas the former is largely controlled by the blood-brain barrier, the latter is regulated by a highly specialized blood-CSF interface, the choroid plexus epithelium, which acts either by controlling the influx of blood-borne compounds, or by clearing deleterious(More)
Choroid plexuses (CPs) are localized in the ventricular system of the brain and form one of the interfaces between the blood and the central nervous system (CNS). They are composed of a tight epithelium responsible for cerebrospinal fluid secretion, which encloses a loose connective core containing permeable capillaries and cells of the lymphoid lineage. In(More)
The choroid plexus epithelium controls the movement of solutes between the blood and the cerebrospinal fluid. It has been considered as a functionally more immature interface during brain development than in adult. The anatomical basis of this barrier is the interepithelial choroidal junction whose tightness has been attributed to the presence of claudins.(More)
The brain develops and functions within a strictly controlled environment resulting from the coordinated action of different cellular interfaces located between the blood and the extracellular fluids of the brain, which include the interstitial fluid and the cerebrospinal fluid (CSF). As a correlate, the delivery of pharmacologically active molecules and(More)
Cerebral homeostasis results from the presence of the protective blood-brain and blood-cerebrospinal fluid barriers located respectively at the brain capillary endothelium and the choroid plexus epithelium. ABCb1 (Pgp) and ABCc1 (Mrp1) transporters are two major proteins of neuroprotection whose localization and functional significance at both barriers(More)
Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on(More)
We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with(More)
The choroid plexuses are the interface between the blood and the cerebrospinal fluid (CSF) contained within the ventricular spaces of the central nervous system. The tight junctions linking adjacent cells of the choroidal epithelium create a physical barrier to paracellular movement of molecules. Multispecific efflux transporters as well as(More)
The membrane-bound form of epoxide hydrolase and NADPH-cytochrome P-450 (c) reductase are two important enzymes involved in the bioactivation/bioinactivation balance of cerebral tissue. In vivo, the developmental profiles and regional localizations of these two enzymes were investigated in the rat. The regional distribution study showed that they are(More)
Traumatic brain injury (TBI) frequently results in neuroinflammation, which includes the invasion of neutrophils. After TBI, neutrophils infiltrate the choroid plexus (CP), a site of the blood-cerebrospinal fluid (CSF) barrier (BCSFB), and accumulate in the CSF space near the injury, from where these inflammatory cells may migrate to brain parenchyma. We(More)