Ulrike Pannasch12
Christian Giaume10
12Ulrike Pannasch
10Christian Giaume
Learn More
Dynamic aspects of interactions between astrocytes, neurons and the vasculature have recently been in the neuroscience spotlight. It has emerged that not only neurons but also astrocytes are organized into networks. Whereas neuronal networks exchange information through electrical and chemical synapses, astrocytes are interconnected through gap junction(More)
Synaptic plasticity involves activity-dependent trafficking of AMPA-type glutamate receptors. Numerous cytoplasmic scaffolding proteins are postulated to control AMPA receptor trafficking, but the detailed mechanisms remain unclear. Here, we show that the transmembrane AMPA receptor regulatory protein (TARP) gamma-8, which is preferentially expressed in the(More)
Astrocytes dynamically interact with neurons to regulate synaptic transmission. Although the gap junction proteins connexin 30 (Cx30) and connexin 43 (Cx43) mediate the extensive network organization of astrocytes, their role in synaptic physiology is unknown. Here we show, by inactivating Cx30 and Cx43 genes, that astroglial networks tone down hippocampal(More)
The extracellular N-terminal domain (NTD) is the largest region of NMDA receptors; however, biological roles for this ectodomain remain unknown. Here, we determined that the F-box protein, Fbx2, bound to high-mannose glycans of the NR1 ectodomain. F-box proteins specify ubiquitination by linking protein substrates to the terminal E3 ligase. Indeed,(More)
Activation of postsynaptic group 1 metabotropic glutamate receptors (mGluRs) by the agonist DHPG causes a long-term depression (DHPG-LTD) of excitatory transmission in the CA1 region of the hippocampus, as well as causing the release of endocannabinoids from pyramidal cells. As cannabinoid agonists cause a presynaptic inhibition at these synapses and(More)
Naturally occurring glutamate analogs, such as kainate and domoate, which cause excitotoxic shellfish poisoning, induce nondesensitizing responses at neuronal alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In addition to acting on AMPA receptors, kainate and domoate also activate high-affinity kainate-type glutamate receptors.(More)
Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through(More)
A typical feature of astrocytes is their high degree of intercellular communication through gap junction channels. Using different models of astrocyte cultures and astrocyte/neuron cocultures, we have demonstrated that neurons upregulate gap-junctional communication and the expression of connexin 43 (Cx43) in astrocytes. The propagation of intercellular(More)
  • Ulrike Pannasch, Dominik Freche, Glenn Dallérac, Grégory Ghézali, Carole Escartin, Pascal Ezan +9 others
  • 2014
Astrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellular and molecular mechanisms are unknown. We show here in mice that connexin 30 controls hippocampal(More)
The high level of intercellular communication mediated by gap junctions between astrocytes indicates that, besides individual astrocytic domains, a second level of organization might exist for these glial cells as they form communicating networks. Therefore,the contribution of astrocytes to brain function should also be considered to result from coordinated(More)