Learn More
The activity and location of carbonic anhydrase has been modified by transformation of tobacco with antisense and over-expression constructs. Antisense expression resulted in the inhibition of up to 99% of carbonic anhydrase activity but had no significant impact on net CO2 assimilation. Stomatal conductance and susceptibility to water stress appeared to(More)
Papaya mosaic potexvirus (PapMV) coat protein (CP) was expressed (CPdeltaN5) in Escherichia coli and showed to self assemble into nucleocapsid like particles (NLPs). Twenty per cent of the purified protein was found as NLPs of 50 nm in length and 80% was found as a multimer of 450 kDa (20 subunits) arranged in a disk. Two mutants in the RNA binding domain(More)
A cDNA encoding the mature, chloroplast-localized carbonic anhydrase in pea has been expressed inE. coli. The enzyme is fully active and yields of up to 20% of the total soluble protein can be obtained from the bacteria. This expression system was used to monitor the effects of site-directed mutagenesis of seven residues found within conserved regions in(More)
Plant-virus-based vaccines have emerged as a promising avenue in vaccine development. This report describes the engineering of an innovative vaccine platform using the papaya mosaic virus (PapMV) capsid protein (CP) as a carrier protein and a C-terminal fused hepatitis C virus (HCV) E2 epitope as the immunogenic target. Two antigen organizations of the(More)
BACKGROUND The ever-present threat of infectious disease, e.g. influenza pandemics, and the increasing need for new and effective treatments in immunotherapy are the driving forces that motivate research into new and innovative vaccine platforms. Ideally, such platforms should trigger an efficient CTL response, be safe, and easy to manufacture. We recently(More)
Hepatitis C virus core protein is the viral nucleocapsid of hepatitis C virus. Interaction of core with cellular membranes like endoplasmic reticulum (ER) and lipid droplets (LD) appears to be involved in viral assembly. However, how these interactions with different cellular membranes are regulated is not well understood. In this study, we investigated how(More)
The core (C) protein of hepatitis C virus (HCV) appears to be a multifunctional protein that is involved in many viral and cellular processes. Although its effects on host cells have been extensively discussed in the literature, little is known about its main function, the assembly and packaging of the viral genome. We have studied the in vitro assembly of(More)
A filamentous virus isolated from Malva neglecta Wallr. (common mallow) and propagated in Chenopodium quinoa was grown, cloned and the complete nucleotide sequence was determined (GenBank accession # DQ660333). The genomic RNA is 6858 nt in length and contains five major open reading frames (ORFs). The genomic organization is similar to members and the(More)
Commercial seasonal flu vaccines induce production of antibodies directed mostly towards hemaglutinin (HA). Because HA changes rapidly in the circulating virus, the protection remains partial. Several conserved viral proteins, e.g., nucleocapsid (NP) and matrix proteins (M1), are present in the vaccine, but are not immunogenic. To improve the protection(More)
Identifying the properties of a molecule involved in the efficient activation of the innate and adaptive immune responses that lead to long-lasting immunity is crucial for vaccine and adjuvant development. Here we show that the papaya mosaic virus (PapMV) is recognized by the immune system as a pathogen-associated molecular pattern (PAMP) and as an antigen(More)