Learn More
Substitutive cell therapy using fetal striatal grafts has demonstrated preliminary clinical success in patients with Huntington's disease, but the logistics required for accessing fetal cells preclude its extension to the relevant population of patients. Human embryonic stem (hES) cells theoretically meet this challenge, because they can be expanded(More)
By analyzing five human embryonic stem (hES) cell lines over long-term culture, we identified a recurrent genomic instability in the human genome. An amplification of 2.5-4.6 Mb at 20q11.21, encompassing approximately 23 genes in common, was detected in four cell lines of different origins. This amplification, which has been associated with oncogenic(More)
Huntington's disease (HD) is characterized by a late clinical onset despite ubiquitous expression of the mutant gene at all developmental stages. How mutant huntingtin impacts on signalling pathways in the pre-symptomatic period has remained essentially unexplored in humans due to a lack of appropriate models. Using multiple human embryonic stem cell lines(More)
Alterations of mitochondrial function may play a central role in neuronal death in Huntington's disease (HD). However, the molecular mechanisms underlying such functional deficits of mitochondria are not elucidated yet. We herein showed that the expression of two important constituents of mitochondrial complex II, the 30-kDa iron-sulfur (Ip) subunit and the(More)
Owing to their original properties, pluripotent human embryonic stem cells (hESCs) and their progenies are highly valuable not only for regenerative medicine, but also as tools to study development and pathologies or as cellular substrates to screen and test new drugs. However, ensuring their genomic integrity is one important prerequisite for both research(More)
Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. Neural derivatives of human embryonic stem cells (hESCs) are currently being used for cell therapy in 3 clinical trials. However, hESCs are prone to genomic instability, which could limit their clinical utility. Here, we report that neural differentiation of hESCs(More)
PURPOSE To investigate a role of common polymorphisms of the CYP1B1 gene in French patients with primary open-angle glaucoma (POAG). METHODS Six common CYP1B1 variants, 5 coding and one in promoter, were compared in 224 unrelated French Caucasian POAG patients, excluding those with a CYP1B1 mutation, and in 47 population-matched controls with a normal(More)
The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The(More)
|This paper presents the global architecture of the Pro-Lab II demonstrator whose purpose is to develop an electronic co-pilot in order to assist the human driver. It will integrate the works of the diierent French participants to the Pro-Art project. The Pro-Lab II demonstrator has been structured into ve main functions. This paper will focus on(More)
| This paper describes the work currently developed at Heudiasyc and Liia within the Pro-Lab II demonstrator. This project started with the second phase of the European Prometheus/Pro-Art program. Its purpose is to develop an electronic co-pilot to assist the human driver. The global software architecture of the demonstrator, presented in 3], is structured(More)