Nathalie Escande-Beillard

Learn More
Studies of mice deficient in classical major histocompatability complex class I (MHCI) revealed that MHCI plays an important role in neurodevelopment in the central nervous system. We previously studied the effects of recombinant MHCI molecules on wildtype retina explants and observed that MHCI can inhibit retina neurite outgrowth, with self-MHCI molecules(More)
Studies of mice lacking MHC class I (MHC I)-associated proteins have demonstrated a role for MHC I in neurodevelopment. A central question arising from these observations is whether neuronal recognition of MHC I has specificity for the MHC I allele product and the peptide presented. Using a well-established embryonic retina explant system, we observed that(More)
Mice deficient in classical major histocompatibility complex class I (MHCI) have aberrations in neurodevelopment. The consequences of upregulated neuronal MHCI expression have not been examined. We found that transgenic C57Bl/6 mice that are engineered to express higher levels of self-D(b) on their CNS neurons have alterations in their hippocampal(More)
Mice that are deficient in classical major histocompatibility complex class I (MHCI) have abnormalities in synaptic plasticity and neurodevelopment and have more extensive loss of synapses and reduced axon regeneration after sciatic nerve transection, suggesting that MHCI participates in maintaining synapses and axon regeneration. Little is known about the(More)
PDL reduces the PDT light dose required to achieve persistent vascular shutdown, even at low PDL radiant exposures. We hypothesize that TS-mediated PDT enhances persistent vascular shutdown achieved with ensuing PDL therapy, primarily via endothelial cell damage (Mitra and Foster, 2008); mechanistic studies currently are underway. Dual phototherapy(More)
thesis, absorption or flow of the Cerebral Spinal Fluid (CSF) and is a common developmental disability in humans. Although CH has a significant genetic component in mice and humans, it is poorly understood at the molecular level. The Subcommissural Organ (SCO), a gland residing at the dorsal opening of the Sylvian aqueduct, has been implicated in CSF flow(More)
  • 1