Nathalie Escande-Beillard

Learn More
Studies of mice deficient in classical major histocompatability complex class I (MHCI) revealed that MHCI plays an important role in neurodevelopment in the central nervous system. We previously studied the effects of recombinant MHCI molecules on wildtype retina explants and observed that MHCI can inhibit retina neurite outgrowth, with self-MHCI molecules(More)
Mice deficient in classical major histocompatibility complex class I (MHCI) have aberrations in neurodevelopment. The consequences of upregulated neuronal MHCI expression have not been examined. We found that transgenic C57Bl/6 mice that are engineered to express higher levels of self-D(b) on their CNS neurons have alterations in their hippocampal(More)
Mice that are deficient in classical major histocompatibility complex class I (MHCI) have abnormalities in synaptic plasticity and neurodevelopment and have more extensive loss of synapses and reduced axon regeneration after sciatic nerve transection, suggesting that MHCI participates in maintaining synapses and axon regeneration. Little is known about the(More)
  • 1