Nathalie Delgehyr

Learn More
The centrosome organizes microtubules by controlling nucleation and anchoring processes. In mammalian cells, subdistal appendages of the mother centriole are major microtubule-anchoring structures of the centrosome. It is not known how newly nucleated microtubules are anchored to these appendages. We show here that ninein, a component of subdistal(More)
Klp10A is a kinesin-13 of Drosophila melanogaster that depolymerizes cytoplasmic microtubules. In interphase, it promotes microtubule catastrophe; in mitosis, it contributes to anaphase chromosome movement by enabling tubulin flux. Here we show that Klp10A also acts as a microtubule depolymerase on centriolar microtubules to regulate centriole length. Thus,(More)
BACKGROUND Budding yeast is a unique model to dissect spindle orientation in a cell dividing asymmetrically. In yeast, this process begins with the capture of pole-derived astral microtubules (MTs) by the polarity determinant Bud6p at the cortex of the bud in G(1). Bud6p couples MT growth and shrinkage with spindle pole movement relative to the contact(More)
In S. cerevisiae, spindle orientation is linked to the inheritance of the ;old' spindle pole by the bud. A player in this asymmetric commitment, Bud6p, promotes cortical capture of astral microtubules. Additionally, Bud6p stimulates actin cable formation though the formin Bni1p. A relationship with the second formin, Bnr1p, is unclear. Another player is(More)
The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal(More)
In Saccharomyces cerevisiae, Kar9p, one player in spindle alignment, guides the bud-ward spindle pole by linking astral microtubule plus ends to Myo2p-based transport along actin cables generated by the formins Bni1p and Bnr1p and the polarity determinant Bud6p. Initially, Kar9p labels both poles but progressively singles out the bud-ward pole. Here, we(More)
Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from(More)
The properties of the microtubule network are regulated at various levels including tissue-dependent isotype switching, post-translational modification of αand β-tubulin, and by a variety of microtubuleassociated molecules (for reviews, see [1–3]). Microtubule nucleation is attributed to γ-tubulin, which is present in protein complexes at the centrosome and(More)
The properties of the microtubule network are regulated at various levels including tissue-dependent isotype switching, post-translational modification of alpha- and beta-tubulin, and by a variety of microtubule-associated molecules (for reviews, see [1-3]). Microtubule nucleation is attributed to gamma-tubulin, which is present in protein complexes at the(More)
Primary and motile cilia differ in their structure, composition, and function. In the brain, primary cilia are immotile signalling organelles present on neural stem cells and neurons. Multiple motile cilia are found on the surface of ependymal cells in all brain ventricles, where they contribute to the flow of cerebrospinal fluid. During development,(More)