Learn More
Soaking in aqueous ammonia (SSA) and/or xylanase pretreatments were developed on wheat straw. Both pretreatments were conducted at high-solids conditions: 15% and 20%, respectively, for SSA and xylanase pretreatments. SSA pretreatment led to the solubilisation of 38%, 12% and 11% of acid insoluble lignin, xylan and glucan, respectively. In case of xylanase(More)
Designing more efficient mixtures of enzymes is necessary to produce molecules of interest from biomass lignocellulosic fractionation. The present study aims to investigate the strategies used by the thermophilic and hemicellulolytic bacterium Thermobacillus xylanilyticus to fractionate wheat bran and wheat straw during its growth. Results demonstrated(More)
To date, the enzymatically-catalysed synthesis of pentose-containing compounds has been limited to the production of oligo-beta-(1-->3) and oligo-beta-(1-->4)-linked xylopyranosides. To our knowledge, no such syntheses have involved arabinofuranose or, indeed, any other sugars in the furanose configuration. In this report, we describe the use of a(More)
DGalactofuranose is a widespread component of cell wall polysaccharides in bacteria, protozoa and fungi, but is totally absent in mammals. Importantly, galactofuranose is a key constituent of major cell envelope polysaccharides in pathogenic mycobacteria. In this respect, galactofuranose-based glycoconjugates are interesting target molecules for drug(More)
The hydrolysis of xylans, one of the main classes of carbohydrates that constitute lignocellulosic biomass, requires the synergistic action of several enzymes. The development of efficient enzymatic strategies for hydrolysis remains a challenge in the pursuit of viable biorefineries, particularly with respect to the valorisation of pentoses. The approach(More)
This study aimed to characterise the parameters governing the non-specific adsorption of a xylanase from Thermobacillus xylanilyticus (Tx-Xyn11) onto lignin isolated from maize stems. Such adsorption may be due to hydrophobic interactions between Tx-Xyn11 and lignin. Our strategy was to mutate hydrophobic residues present on the surface of Tx- Xyn11 into(More)
Molecular regulation of growth must include spatial and temporal coupling of cell production and cell expansion. The underlying mechanisms, especially under environmental challenge, remain obscure. Spatial patterns of cell processes make the root apex well suited to deciphering stress signaling pathways, and to investigating both processes. Kinematics and(More)
Various enzymatic cocktails were produced from two Trichoderma reesei strains, a cellulase hyperproducer strain and a strain with β-glucosidase activity overexpression. By using various carbon sources (lactose, glucose, xylose, hemicellulosic hydrolysate) for strains growth, contrasted enzymatic activities were obtained. The enzymatic cocktails presented(More)
  • 1