Nathalie Aubrun

Learn More
A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper,(More)
In this article we study how a subshift can simulate another one, where the notion of simulation is given by operations on subshifts inspired by the dynamical systems theory (factor, projective subaction...). There exists a correspondence between the notion of simulation and the set of forbidden patterns. The main result of this paper states that any(More)
Traditionally a tiling is defined with a finite number of finite forbidden patterns. We can generalize this notion considering any set of patterns. Generalized tilings defined in this way can be studied with a dynamical point of view, leading to the notion of subshift. In this article we establish a correspondence between an order on subshifts based on(More)
A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper,(More)
We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite ranked trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique reduced deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized(More)