Nathalie Aubrun

Learn More
A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper,(More)
In this article we study how a subshift can simulate another one, where the notion of simulation is given by operations on subshifts inspired by the dynamical systems theory (factor, projective subaction...). There exists a correspondence between the notion of simulation and the set of forbidden patterns. The main result of this paper states that any(More)
Traditionally a tiling is defined with a finite number of finite forbidden patterns. We can generalize this notion considering any set of patterns. Generalized tilings defined in this way can be studied with a dynamical point of view, leading to the notion of subshift. In this article we establish a correspondence between an order on subshifts based on(More)