Learn More
Lipoprotein(a) contributes to the development of atherosclerosis through the binding of its plasminogen-like apolipoprotein(a) component to fibrin and other plasminogen substrates. Apolipoprotein(a) contains a major lysine binding site in one of its kringle domains. Destruction of this site by mutagenesis greatly reduces the binding of apolipoprotein(a) to(More)
Apolipoprotein(a), (apo(a)), is the distinguishing protein portion of the lipoprotein(a) particle, elevated plasma levels of which are a major risk factor for cardiovascular disease. A search for enhancer elements that control the transcription of the apo(a) gene led to the identification of an upstream element that contains target binding sites for members(More)
The lipoprotein Lp(a), a major inherited risk factor for atherosclerosis, consists of a low density lipoprotein-like particle containing apolipoprotein B-100 plus the distinguishing component apolipoprotein(a) (apo(a)). Human apo(a) contains highly repeated domains related to plasminogen kringle four plus single kringle five and protease-like domains.(More)
To test directly whether fibrin(ogen) is a key binding site for apolipoprotein(a) [apo(a)] in vessel walls, apo(a) transgenic mice and fibrinogen knockout mice were crossed to generate fibrin(ogen)-deficient apo(a) transgenic mice and control mice. In the vessel wall of apo(a) transgenic mice, fibrin(ogen) deposition was found to be essentially colocalized(More)
The expression of ASPP2 (53BP2L), a proapoptotic member of a family of p53-binding proteins, is frequently suppressed in many human cancers. Accumulating evidence suggests that ASPP2 inhibits tumor growth; however, the mechanisms by which ASPP2 suppresses tumor formation remain to be clarified. To study this, we targeted the ASPP2 allele in a mouse by(More)
Apo(a), the unique apoprotein of lipoprotein(a) (Lp[a]), can express lysine-binding sites(s) (LBS). However, the LBS activity of Lp(a) is variable, and this heterogeneity may influence its pathogenetic properties. An LBS-Lp(a) immunoassay has been developed to quantitatively assess the LBS function of Lp(a). Lp(a) within a sample is captured with an(More)
The atherogenicity of Lp(a) is attributable to the binding of its apolipoprotein(a) component to fibrin and other plasminogen substrates. It can attenuate the activation of plasminogen, diminishing plasmin-dependent fibrinolysis and transforming growth factor-beta activation. Apolipoprotein(a) contains a major lysine-binding site in one of its kringle(More)
  • 1