Natasha Spottiswoode

Learn More
Hepcidin controls the levels and distribution of iron, an element whose availability can influence the outcome of infections. We investigated hepcidin regulation by infection-associated cytokines, pathogen-derived molecules, and whole pathogens in vitro and in vivo. We found that IL-22, an effector cytokine implicated in responses to extracellular(More)
Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly(More)
During its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape(More)
The populations in greatest need of iron supplementation are also those at greatest risk of malaria: pregnant women and young children. Iron supplementation has been shown to increase malaria risk in these groups in numerous studies, although this effect is likely diminished by factors such as host immunity, host iron status, and effective malaria(More)
Malaria and iron have a complex but important relationship. Plasmodium proliferation requires iron, both during the clinically silent liver stage of growth and in the disease-associated phase of erythrocyte infection. Precisely how the protozoan acquires its iron from its mammalian host remains unclear, but iron chelators can inhibit pathogen growth in(More)
Hepcidin, the master regulator of bioavailable iron, is a key mediator of anemia and also plays a central role in host defense against infection. We hypothesized that measuring hepcidin levels in cord blood could provide an early indication of interindividual differences in iron regulation with quantifiable implications for anemia, malaria, and(More)
The populations in greatest need of iron supplementation are also those at greatest risk of malaria: pregnant women and young children. Iron supplementation has been shown to increase malaria risk in these groups in numerous studies, although this effect is likely diminished by factors such as host immunity, host iron status, and effective malaria(More)
Epidemiological observations have linked increased host iron with malaria susceptibility, and perturbed iron handling has been hypothesized to contribute to the potentially life threatening anemia that may accompany blood-stage malaria infection. To improve our understanding of these relationships, we examined the pathways involved in regulation of the(More)
  • 1